一道高中数学题,帮忙解一下 a,b,c>0且abc=1,证1/a³(b+c)+1/b³(a+c)+
一道高中数学题,帮忙解一下a,b,c>0且abc=1,证1/a³(b+c)+1/b³(a+c)+1/c³(a+b)≥3/2...
一道高中数学题,帮忙解一下
a,b,c>0且abc=1,证1/a³(b+c)+1/b³(a+c)+1/c³(a+b)≥3/2 展开
a,b,c>0且abc=1,证1/a³(b+c)+1/b³(a+c)+1/c³(a+b)≥3/2 展开
3个回答
展开全部
原式=1/[a³(b+c)]+1/[b³(a+c)]+1/[c³(a+b)]=(abc)/[a³(b+c)]+(abc)/[b³(a+c)]+(abc)/[c³(a+b)]
=1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]
根据柯西不等式:
[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·[(1/b+1/c)+(1/a+1/c)+(1/a+1/b)]≥(1/a+1/b+1/c)²
即:[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·2(1/a+1/b+1/c)≥(1/a+1/b+1/c)²
∴原式=[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]≥(1/2)(1/a+1/b+1/c)
根据均值不等式:(1/a+1/b+1/c)/3≥[(1/a)·(1/b)·(1/c)]^(1/3)=1,1/a+1/b+1/c≥3
∴原式≥(1/2)×3=3/2
=1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]
根据柯西不等式:
[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·[(1/b+1/c)+(1/a+1/c)+(1/a+1/b)]≥(1/a+1/b+1/c)²
即:[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·2(1/a+1/b+1/c)≥(1/a+1/b+1/c)²
∴原式=[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]≥(1/2)(1/a+1/b+1/c)
根据均值不等式:(1/a+1/b+1/c)/3≥[(1/a)·(1/b)·(1/c)]^(1/3)=1,1/a+1/b+1/c≥3
∴原式≥(1/2)×3=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询