已知函数f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a的最大值为1。求常数a
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
f(x)=cos(x+π/6)-sin(x-2π/3)+sinx+a
=√3/2cosx-1/2sinx+1/2sinx+√3/2cosx+sinx+a
=√3cosx+sinx+a
=2(√3/2cosx+1/2sinx)+a
=2sin(x+π/3)+a
2+a=1
a=-1
2)f(x)=2sin(x+π/3)-1≥0
sin(x+π/3)≥1/2
2kπ+5π/6≥x+π/3≥2kπ+π/6
2kπ+π/2≥x+π/3≥2kπ-π/6
=√3/2cosx-1/2sinx+1/2sinx+√3/2cosx+sinx+a
=√3cosx+sinx+a
=2(√3/2cosx+1/2sinx)+a
=2sin(x+π/3)+a
2+a=1
a=-1
2)f(x)=2sin(x+π/3)-1≥0
sin(x+π/3)≥1/2
2kπ+5π/6≥x+π/3≥2kπ+π/6
2kπ+π/2≥x+π/3≥2kπ-π/6
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询