已知函数f(x)=x+1/2x+2 (x大于等于1)

运用函数单调性的定义证明f(x)在[1,正无穷)为曾函数。求f(x)最小值... 运用函数单调性的定义证明f(x)在[1,正无穷)为曾函数。
求f(x)最小值
展开
 我来答
百度网友28b4182
2012-01-06 · TA获得超过7222个赞
知道大有可为答主
回答量:4847
采纳率:100%
帮助的人:1833万
展开全部
设x1>x2>=1
则f(x1)-f(x2)=x1+1/2x1+2-(x2+1/2x2+2)
=x1-x2+(x2-x1)/2(x1*x2)
=(x1-x2)(1-1/(2*x1*x2))>0
所以f(x)在[1,正无穷)为增函数。
所以f(x)的最小值是在x=1的时候取到
最小值为7/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式