已知函数fx=1/2x-sinx,x∈[0,2π],求单调区间和最值
展开全部
f'(x)=1/2-cosx
令f'(x)=0 x1=π/3 x2=5π/3
f''(x)=sinx f''(π/3)=√3/2>0 f''(5π/3)=-√3/2<0
当0<x<π/3时:y'<0
当π/3<x<5π/3时:y'>0
当5π/3<x>2π时:y'<0
∴f(x)在[0,π/3]上单调递减;
f(x)在[π/3,5π/3]上单调递增;
f(x)在[5π/3,2π]上单调递减;
x=π/3为极小值点,极小值为π/6-√3/2
x=5π/3极大值点,极大值为5π/6+√3/2
经与f(0)、f(2π)比较最小值为π/6-√3/2,最大值为5π/6+√3/2
令f'(x)=0 x1=π/3 x2=5π/3
f''(x)=sinx f''(π/3)=√3/2>0 f''(5π/3)=-√3/2<0
当0<x<π/3时:y'<0
当π/3<x<5π/3时:y'>0
当5π/3<x>2π时:y'<0
∴f(x)在[0,π/3]上单调递减;
f(x)在[π/3,5π/3]上单调递增;
f(x)在[5π/3,2π]上单调递减;
x=π/3为极小值点,极小值为π/6-√3/2
x=5π/3极大值点,极大值为5π/6+√3/2
经与f(0)、f(2π)比较最小值为π/6-√3/2,最大值为5π/6+√3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询