怎样提出问题
4个回答
展开全部
在问题空间中进行搜索,以便使问题的初始状态达到目标状态的思维过程。个体对问题情境的适当的反应过程。心理学的解释是:由一定的情景引起的,按照一定的目标,应用各种认知活动、技能等,经过一系列的思维操作,使问题得以解决的过程。
(1)呈现问题情境命题。 奥苏伯尔认为,问题是由有意义的言语命题构成。其中包括目标和条件,他认为,一组命题之所以构成问题情境,是因为从已知条件到问题之间包含了认知空隙,学生已有知识结构中没有现成可以用于达到目标的步骤和方法。 (2)明确问题与已知条件。 问题情境命题是客观存在的刺激材料,它们可以激发学生回忆有关的背景命题。学生把这两种命题相联系,从而理解问题的条件和要达到的目标。 (3)填补空隙过程。 这是解决问题的核心。学生明确已知条件和目标之间的空隙或差距,并力图填补空隙,这需要一系列的知识和加工: ①提取背景命题。所谓背景命题是学习者认知结构中与当前问题解答有关的事实、概念和原理。学习者必须根据当前问题的需要提取有关命题。这些命题都是学习者平时学习所积累的。 ②运用推理规则。所谓推理规则是作出合理结论的逻辑规则。在系统有序的学习中都存在着各种外显的或内隐的规则。 ③采用一定策略。解决问题的策略通常指选择、组合、改变或操作命题的系列,以便填补问题的固有空隙。策略的功能就在于减少尝试与错误的任意性,节约解决问题所需的时间,提高解答的概率。策略提出一连串步骤,从差距的一端到另一端,可以是顺向的,也可以是逆向的。 ④解答之后的检验。问题一旦得到解决,通常需要一定形式的检验,查明推理进程有无错误,空隙填被的途径是否最为简捷,以及可否正式写出来供交流之用等等。[1]
信息加工问题解决模式
信息加工论者把问题解决看作是信息加工系统对信息的加工,把最初的信息转换成最终状态的信息。问题状态可分为初始状态、中间状态和目标状态。问题解决的过程就是从初始状态到中间状态再达到目标状态的过程。从一种问题状态转变成另一种问题状态的操作称之为算子(Operator)。问题解决的过程就是利用算子从初始状态转变到目标状态的过程。由一系列问题状态和转变问题状态的算子就组成了问题空间(Problem Space)。要达到目标状态,就要在问题空间搜索一系列算子。搜索算子的途径有二:一是算法式(algo-rithm),它将达到目标和各种可能的方案都算出来。这种途径保证成功但费时费力,有时在实际中甚至不可能实现。二是启发式(heurisitic),它只根据目标的指引,试图不断地将问题状态转换成与目标状态相近的状态,从而只试探那些对成功趋向目标状态有价值的算子。它简单省时,但却不一定保证成功。
格拉斯问题解决模式
格拉斯(Class)1985年把问题解决划分为相互区别又相互联系的四个阶段。 1.形成问题的初始表征。即问题的理解阶段,首先要把问题空间转换到工作记忆中,亦即在工作记忆中对组成问题空间的种种条件、对象、目标和算子等进行编码,建立表征。 2.制定计划。制定计划就是从广阔的问题空间中搜索出能达到目标的解决方法,也就是从长时记忆中搜索出与解决问题的方法有关的信息。如果搜索出过去解决同类问题的办法,就可以利用这种办法成功地解决当前问题,否则,就要探索其他方法才能解决问题。 3.重构问题表征。如果第一阶段建构的表征对于执行计划是不充分的,就必须重构问题表征。重构的问题表征与建立初始问题表征在许多方面有相似之处,但有时需要摒弃初始问题表征,而建构新的表征。 4.执行计划和检验结果。将解决问题的计划、方案在实际中加以操作、实施的过程,就是执行过程。 问题解决者把问题的答案同初始的问题表征相匹配,如果利用操作使问题的初始状态转变成目标状态,问题解决就成功了。然后将解题程序储存于长时记忆中,以解决其同类问题。如果没有达到目标状态,就要返回修订计划,甚至摒弃原计划,采用新的解决问题的方法。
我吧我吧!!!!! ❤0❤~~~~
(1)呈现问题情境命题。 奥苏伯尔认为,问题是由有意义的言语命题构成。其中包括目标和条件,他认为,一组命题之所以构成问题情境,是因为从已知条件到问题之间包含了认知空隙,学生已有知识结构中没有现成可以用于达到目标的步骤和方法。 (2)明确问题与已知条件。 问题情境命题是客观存在的刺激材料,它们可以激发学生回忆有关的背景命题。学生把这两种命题相联系,从而理解问题的条件和要达到的目标。 (3)填补空隙过程。 这是解决问题的核心。学生明确已知条件和目标之间的空隙或差距,并力图填补空隙,这需要一系列的知识和加工: ①提取背景命题。所谓背景命题是学习者认知结构中与当前问题解答有关的事实、概念和原理。学习者必须根据当前问题的需要提取有关命题。这些命题都是学习者平时学习所积累的。 ②运用推理规则。所谓推理规则是作出合理结论的逻辑规则。在系统有序的学习中都存在着各种外显的或内隐的规则。 ③采用一定策略。解决问题的策略通常指选择、组合、改变或操作命题的系列,以便填补问题的固有空隙。策略的功能就在于减少尝试与错误的任意性,节约解决问题所需的时间,提高解答的概率。策略提出一连串步骤,从差距的一端到另一端,可以是顺向的,也可以是逆向的。 ④解答之后的检验。问题一旦得到解决,通常需要一定形式的检验,查明推理进程有无错误,空隙填被的途径是否最为简捷,以及可否正式写出来供交流之用等等。[1]
信息加工问题解决模式
信息加工论者把问题解决看作是信息加工系统对信息的加工,把最初的信息转换成最终状态的信息。问题状态可分为初始状态、中间状态和目标状态。问题解决的过程就是从初始状态到中间状态再达到目标状态的过程。从一种问题状态转变成另一种问题状态的操作称之为算子(Operator)。问题解决的过程就是利用算子从初始状态转变到目标状态的过程。由一系列问题状态和转变问题状态的算子就组成了问题空间(Problem Space)。要达到目标状态,就要在问题空间搜索一系列算子。搜索算子的途径有二:一是算法式(algo-rithm),它将达到目标和各种可能的方案都算出来。这种途径保证成功但费时费力,有时在实际中甚至不可能实现。二是启发式(heurisitic),它只根据目标的指引,试图不断地将问题状态转换成与目标状态相近的状态,从而只试探那些对成功趋向目标状态有价值的算子。它简单省时,但却不一定保证成功。
格拉斯问题解决模式
格拉斯(Class)1985年把问题解决划分为相互区别又相互联系的四个阶段。 1.形成问题的初始表征。即问题的理解阶段,首先要把问题空间转换到工作记忆中,亦即在工作记忆中对组成问题空间的种种条件、对象、目标和算子等进行编码,建立表征。 2.制定计划。制定计划就是从广阔的问题空间中搜索出能达到目标的解决方法,也就是从长时记忆中搜索出与解决问题的方法有关的信息。如果搜索出过去解决同类问题的办法,就可以利用这种办法成功地解决当前问题,否则,就要探索其他方法才能解决问题。 3.重构问题表征。如果第一阶段建构的表征对于执行计划是不充分的,就必须重构问题表征。重构的问题表征与建立初始问题表征在许多方面有相似之处,但有时需要摒弃初始问题表征,而建构新的表征。 4.执行计划和检验结果。将解决问题的计划、方案在实际中加以操作、实施的过程,就是执行过程。 问题解决者把问题的答案同初始的问题表征相匹配,如果利用操作使问题的初始状态转变成目标状态,问题解决就成功了。然后将解题程序储存于长时记忆中,以解决其同类问题。如果没有达到目标状态,就要返回修订计划,甚至摒弃原计划,采用新的解决问题的方法。
我吧我吧!!!!! ❤0❤~~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询