1个回答
展开全部
令x=tant,则dx=sec^2tdt
原式=∫(0,π/4) ln(1+tant)/sec^2t*sec^2tdt
=∫(0,π/4) ln(1+tant)dt
令u=π/4-t,则t=π/4-u,dt=-du
∫(0,π/4) ln(1+tant)dt=∫(π/4,0) ln[1+tan(π/4-u)](-du)
=∫(0,π/4) ln[1+(1-tanu)/(1+tanu)]du
=∫(0,π/4) ln[2/(1+tanu)]du
=∫(0,π/4) ln2du-∫(0,π/4) ln(1+tanu)du
=ln2*(π/4)-∫(0,π/4) ln(1+tant)dt
所以2*∫(0,π/4) ln(1+tant)dt=ln2*(π/4)
∫(0,π/4) ln(1+tant)dt=ln2*(π/8)
所以原式=ln2*(π/8)
原式=∫(0,π/4) ln(1+tant)/sec^2t*sec^2tdt
=∫(0,π/4) ln(1+tant)dt
令u=π/4-t,则t=π/4-u,dt=-du
∫(0,π/4) ln(1+tant)dt=∫(π/4,0) ln[1+tan(π/4-u)](-du)
=∫(0,π/4) ln[1+(1-tanu)/(1+tanu)]du
=∫(0,π/4) ln[2/(1+tanu)]du
=∫(0,π/4) ln2du-∫(0,π/4) ln(1+tanu)du
=ln2*(π/4)-∫(0,π/4) ln(1+tant)dt
所以2*∫(0,π/4) ln(1+tant)dt=ln2*(π/4)
∫(0,π/4) ln(1+tant)dt=ln2*(π/8)
所以原式=ln2*(π/8)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询