已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5.(1证明tanA=2tanB (2)tanB的值 重点是!!!!!!!!

重点是第二问!!!!... 重点是第二问!!!! 展开
WY070135
2012-01-16 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2444
采纳率:100%
帮助的人:1694万
展开全部
证明:

sin(A+B)=sinAcosB+sinBcosA=3/5
sin(A-B)=sinAcosB-sinBcosA=1/5
两式相加,得:
2sinAcosB=4/5
sinAcosB=2/5 ①
则sinBcosA=1/5 ②
①/②,得:
tanA/tanB=2
即tanA=2tanB


∵△ABC是锐角三角形
∴0<C<π/2
又A+B=π-C
∴π/2<A+B<π
∵sin(A+B)=3/5
∴cos(A+B)=-√[1-sin²(A+B)]=-4/5
则tan(A+B)=sin(A+B)/cos(A+B)=-3/4
即(tanA+tanB)/(1-tanAtanB)=-3/4
又tanA=2tanB
∴3tanB/(1-2tan²B)=-3/4
即2tan²B-4tanB-1=0
解得tanB=(4±2√6)/4
∵0<B<π/2
∴tanB=(4+2√6)/4=1+(√6)/2
a_544
2012-01-16
知道答主
回答量:6
采纳率:0%
帮助的人:9413
展开全部
sin(A+B)=sinAcosB+sinBcosA=3/5
sin(A-B)=sinAcosB-sinBcosA=1/5
两式相加得2sinAcosB= 4/5
两式相减得2cosAsinB=2/5可以得出tanA=2tanB
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式