展开全部
解:由于原式的绝对值共有1997项,最中间的那一项是|x-999|,所以只需取x=999,它们的和就可以获得最小值,原式可以展开为:
原式=|999-1|+|999-2|+...+|999-998|+|999-999|+|999-1000|+...+|999-1997|
=998+997+...+1+0+1+...+998
=2×(1+2+3+...+998)
=2×998×(998+1)/2
=998×999
=997002
所以最小值为997002。
原式=|999-1|+|999-2|+...+|999-998|+|999-999|+|999-1000|+...+|999-1997|
=998+997+...+1+0+1+...+998
=2×(1+2+3+...+998)
=2×998×(998+1)/2
=998×999
=997002
所以最小值为997002。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询