已知数列{an}是公差为d(d≠0)的等差数列,数列{bn}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,

已知数列{an}是公差为d(d≠0)的等差数列,数列{bn}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d-1),a5=f(2d-1),b1=f(... 已知数列{an}是公差为d(d≠0)的等差数列,数列{bn}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d-1),a5=f(2d-1),b1=f(q-2),b3=f(q).(1)求数列{an}和{bn}的通项公式;(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有c1b1+c22b2+…+cnnbn=an+1成立,求Sn. 展开
 我来答
玉人在乎4561
推荐于2016-07-20 · TA获得超过381个赞
知道答主
回答量:109
采纳率:0%
帮助的人:57.3万
展开全部
(1)∵数列{an}是公差为d(d≠0)的等差数列,f(x)=x2,且a1=f(d-1),a5=f(2d-1),
∴(d-1)2+4d=(2d-1)2
∴d=2,a1=1.
∴an=2n-1;
∵数列{bn}是公比为q的(q∈R)的等比数列,f(x)=x2,且b1=f(q-2),b3=f(q),
则b2=q
∴q2=q2(q-2)2
解得q=3,或q=1,又b1=1.
∴bn=3n-1;或bn=1
(2)∵对一切n∈N*,都有
c1
b1
+
c2
2b2
+…+
cn
nbn
an+1
成立,
∴当n=1时,
c1
b1
a2

∵a1=3,b1=1,
∴c1=3,S1=3;
当n≥2时,∵
c1
b1
+
c2
2b2
+…+
cn
nbn
an+1

c1
b1
+
c2
2b2
+…+
cn?1
(n?1)bn?1
=an
cn
nbn
an+1?an=2

∴cn=2n?3n-1
故cn=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消