设函数F(x)=ex+sinx-ax.(1)若x=0是F(x)的极值点,求a的值;(2)若x≥0时,函数y=F(x)的图象恒

设函数F(x)=ex+sinx-ax.(1)若x=0是F(x)的极值点,求a的值;(2)若x≥0时,函数y=F(x)的图象恒不在y=F(-x)的图象下方,求实数a的取值范... 设函数F(x)=ex+sinx-ax.(1)若x=0是F(x)的极值点,求a的值;(2)若x≥0时,函数y=F(x)的图象恒不在y=F(-x)的图象下方,求实数a的取值范围. 展开
 我来答
刚强还端庄的好汉3192
2014-10-11 · 超过83用户采纳过TA的回答
知道答主
回答量:158
采纳率:66%
帮助的人:83.5万
展开全部
(1)函数F(x)=ex+sinx-ax的导函数F′(x)=ex+cosx-a
∵x=0是F(x)的极值点,∴F′(0)=1+1-a=0
解得a=2
又当a=2时,
x<0时,F′(x)=ex+cosx-2<0,x>0时F′(x)=ex+cosx-2>0
∴x=0是F(x)的极小值点
∴a=2
(2)令φ(x)=F(x)-F(-x)=ex-e-x+2sinx-2ax
则φ′(x)=ex+e-x+2cosx-2a
令S(x)=φ′′(x)=ex-e-x-2sinx
∵S′(x)=ex+e-x-2cosx≥0当x≥0时恒成立
∴函数S(x)在[0,+∞)上单调递增
∴S(x)≥S(0)=0当x≥0时恒成立
∴函数φ′(x)在[0,+∞)上单调递增,
∴φ′(x)≥φ′(0)=4-2a当x≥0时恒成立
当a≤2时,φ′(x)≥0,函数φ(x)在[0,+∞)上单调递增,即φ(x)≥φ(0)=0
故a≤2时,F(x)≥F(-x)恒成立
当a>2时,φ′(0)<0,又∵φ′(x)在[0,+∞)上单调递增
∴总存在x0∈(0,+∞),使得在区间[0,x0)上φ′(x)<0,导致φ(x)在[0,x0)上递减,而φ(0)=0
∴当x∈(0,x0)时,φ(x)<0,这与题意不符,∴a>2不合题意
综上,a的取值范围是(-∞,2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式