设a为实数,函数f(x)=x^2+|x-a|+1,x∈R (1)讨论f(x)的奇偶性;(2)若x≥a,求f(x)的最小值

暖眸敏1V
2012-01-21 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9566万
展开全部
函数f(x)=x^2+|x-a|+1,
(1)a=0时,f(x)=x^2+|x|+1,f(-x)=f(x),f(x)是偶函数
a≠0时,f(-x)≠f(-x),f(-x)≠-f(x),f(x)非奇偶函数
(2)x≥a,配方得:f(x)=(x+1/2)^2 -a +3/4
当a<-12时, f(x)在[a,-1/2]上递减,在[-1/2,+∞)上递增
x=-1/2时 f(x)min=-a+3/4
当a≥-1/2时,f(x)在[a,+∞)上递增
x=a时,f(x)min=a^2+1
百度网友b14910b
2012-01-21 · TA获得超过1713个赞
知道答主
回答量:82
采纳率:0%
帮助的人:154万
展开全部
f(-x)=x^2+ |x+a| +1 不恒等于f(x)或-f(x)
f(x)非奇非偶

x≥a,f(x)=x^2 + x-a+ 1=(x+1/2)^2 -a +3/4 配方
x=-1/2时 f(x)min=-a+3/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式