排列组合
排列组合的公式是
排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1
组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成枣坦一组,叫做从n个不同元素中取出耐丛m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)/m!;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个凳亩桐元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1
排列组合
组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)∧2/m!=A(n,m)/m!; C(n,m)=C(n,n-m)。(其中n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
扩展资伍纤料
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有毕橘乎mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
⒉、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
⒊、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
⑵乘法原理和分步计数法
⒈、 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
⒉、合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成手悉这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
参考资料:排列组合的百度百科
排列组合是组合学最基本的概念弯凳洞。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
排列、组合、二项式定理公式口诀:
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转粗蚂化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两埋枯条性质两公式,函数赋值变换式。
An m(m是上标) =n的阶乘/(n-m)的阶乘
组合的公式 是 C 的
算了 符号逗棚坦 我不太好打,你自己看一下参考资料里面有详细的公式
排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.
举个例子,从甲乙丙山桐丁 4人中选择3人
如果是排列的话,甲乙丙 与 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲
是不相同的 ,就是说要考虑先后顺序 A4 (3是上标) =24
如果是组合的话,甲乙丙 与 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲
都是 甲乙丙这3个人,不考虑先后顺序, C4(3 上标 )4种方法
排列:
A(m,n)=n(n-1)(n-2)...(n-m+1) 【A(m,n)表示从n个元素中雹弊取m个元素按一定次序的排列】。
【m---上标,n下标】,A(m,n) ---又成为选排列。
A(m,n)=n!/(n-m)!【n!---n的阶乘,即 n*n*n...】。
2.A(m,m)=m!【在m个元素中只考虑元素的次序的排列,即全排列】。
组合:
C(m,n)=A(m,n)/A(m,m)=n!/m!(n-m)!.【从n个元素中取m个元素的组合】
C(m,n)=C(n-m,n)
【从n个元素中取m个元素的组合=从n个元素中取( n-m)个元素的组合】
3.C(m,n+1)=C(m,n)+C(m-1,n)。
4. k*C(k,n)=n*C(k-1,n-1)。
另外,规定:C(0,n)=1,0!=1。
拓展资料:正肆消
排列组合的计算公式是:排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n/(n-m)
组合数,从举知n个中取m个,相当于不排,就是n/[(n-m)m]。