如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2)
1个回答
展开全部
分析:(1)仔细观察图象结合题意先求出C点坐标,再将CQ两点坐标代入y=kx+b即可求得直线QC的解析式;
(2)根据题意列出比例关系式,直接解答即可得出a得出值.
解答: 解:(1)由题意可知点C的坐标为(1,1).(1分)
设直线QC的解析式为y=kx+b.
∵点Q的坐标为(0,2),
∴可求直线QC的解析式为y=-x+2.(2分)
(2)如图,当点P在OB上时,设PQ交CD于点E,可求点E的坐标为( a2,1).
则 AP+AD+DE=2+52a, CE+BC+BP=3-32a.
由题意可得 2+52a=3(3-32a).
∴a=1.(4分)
由对称性可求当点P在OA上时,a=-1,
∴满足题意的a的值为1或-1.(5分)
(2)根据题意列出比例关系式,直接解答即可得出a得出值.
解答: 解:(1)由题意可知点C的坐标为(1,1).(1分)
设直线QC的解析式为y=kx+b.
∵点Q的坐标为(0,2),
∴可求直线QC的解析式为y=-x+2.(2分)
(2)如图,当点P在OB上时,设PQ交CD于点E,可求点E的坐标为( a2,1).
则 AP+AD+DE=2+52a, CE+BC+BP=3-32a.
由题意可得 2+52a=3(3-32a).
∴a=1.(4分)
由对称性可求当点P在OA上时,a=-1,
∴满足题意的a的值为1或-1.(5分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询