证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0?
1个回答
展开全部
设 a为矩阵A的特征值,X为对应的非零特征向量.
则有 AX = aX.
aX = AX = A^2X = A(AX) = A(aX) = aAX = a(aX) = a^2X,
(a^2 - a)X = 0,
因X为非零向量,所以.
0 = a^2 - a = a(a-1),
a = 0或1.,5,设λ为其特征值,有
λ^2=λ
λ(λ-1)=0
λ=1或0 。,1,特征方程为λ^2=λ
即λ^2-λ=λ(λ-1)=0
A的特征值为1或0,1,感觉上面两位说的都有问题。数学还是严谨点好。
第一位显然是错的,又没告诉你A是2阶方阵,凭什么说特征多项式就是2次的啊?第二位讲的太简单了,逻辑上不太清楚,有点给人想当然的感觉。
我觉得应该用矩阵论的Hamilton-Cayley定理:
A^2=A,说明f(x)=x^2-x是矩阵A的一个化零多项式,根据Hamilton-Cayley定理,A的特征值只可能是化零多项式的根。也...,1,
则有 AX = aX.
aX = AX = A^2X = A(AX) = A(aX) = aAX = a(aX) = a^2X,
(a^2 - a)X = 0,
因X为非零向量,所以.
0 = a^2 - a = a(a-1),
a = 0或1.,5,设λ为其特征值,有
λ^2=λ
λ(λ-1)=0
λ=1或0 。,1,特征方程为λ^2=λ
即λ^2-λ=λ(λ-1)=0
A的特征值为1或0,1,感觉上面两位说的都有问题。数学还是严谨点好。
第一位显然是错的,又没告诉你A是2阶方阵,凭什么说特征多项式就是2次的啊?第二位讲的太简单了,逻辑上不太清楚,有点给人想当然的感觉。
我觉得应该用矩阵论的Hamilton-Cayley定理:
A^2=A,说明f(x)=x^2-x是矩阵A的一个化零多项式,根据Hamilton-Cayley定理,A的特征值只可能是化零多项式的根。也...,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询