在三角形ABC中,角A、B、C所对的边分别为a、b、c,已知cos2C=-1/4。当a=2,2sinA=sinc时,求b及c的长
1个回答
2012-01-26 · 知道合伙人教育行家
关注
展开全部
cos2C=-1/4
1-2sin^2C=-1/4
2sin^2C=1+1/4=5/4
sin^2C=5/8
sinC=√10/4
a=2,2sinA=sinc
a/sinA=c/sinC
c=asinC/sinA=2*2=4
c>a
A为锐角
sinA=sinC/2=√10/8
cosA=√{1-10/64} = 3√6/8
a^2=b^2+c^2-2bccosA
2^2=b^2+4^2-2b*4*3√6/8
b^2-3√6b+12=0
(b-√6)(b-2√6)=0
b=√6,或2√6
1-2sin^2C=-1/4
2sin^2C=1+1/4=5/4
sin^2C=5/8
sinC=√10/4
a=2,2sinA=sinc
a/sinA=c/sinC
c=asinC/sinA=2*2=4
c>a
A为锐角
sinA=sinC/2=√10/8
cosA=√{1-10/64} = 3√6/8
a^2=b^2+c^2-2bccosA
2^2=b^2+4^2-2b*4*3√6/8
b^2-3√6b+12=0
(b-√6)(b-2√6)=0
b=√6,或2√6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询