在抛物线Y=4X^2上求一点,使这点到直线Y=4X-5的距离最短
4个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
设抛物线Y=4X^2上的点的坐标是(x,4x^2)
用点到直线距离公式得
d=|4x-4x^2-5|/√17
可见,只需要求d的最小值即可
令4x-4x^2-5=0=4x^2-4x+5
判别式△<0
因此顶点处即最小值处,配方得
4x^2-4x+5=(2x-1)^2+4
可见当2x-1=0,x=1/2时,有最小距离4√17/17
此时y=1
点的坐标为(1/2,1)
用点到直线距离公式得
d=|4x-4x^2-5|/√17
可见,只需要求d的最小值即可
令4x-4x^2-5=0=4x^2-4x+5
判别式△<0
因此顶点处即最小值处,配方得
4x^2-4x+5=(2x-1)^2+4
可见当2x-1=0,x=1/2时,有最小距离4√17/17
此时y=1
点的坐标为(1/2,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在抛物线Y=4X²上求一点,使这点到直线Y=4X-5的距离最短
解:y=4x-5的斜率K=4,故只需在抛物线y=4x²上找到导数等于4的点,那么过抛物线这一点的切线必平行于直线y=4x-5,于是这一点到直线的距离必最短。为此令:
y′=8x=4,得x=1/2,相应地y=4(1/2)²=1,即点(1/2,1)到直线4x-y-5=0的距离d最短,
dmin=︱2-1-5︱/√17=4/√17=(4/17)√17
解:y=4x-5的斜率K=4,故只需在抛物线y=4x²上找到导数等于4的点,那么过抛物线这一点的切线必平行于直线y=4x-5,于是这一点到直线的距离必最短。为此令:
y′=8x=4,得x=1/2,相应地y=4(1/2)²=1,即点(1/2,1)到直线4x-y-5=0的距离d最短,
dmin=︱2-1-5︱/√17=4/√17=(4/17)√17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求与该直线平行且与抛物线相交的直线,用代入法,b^2-4ac=0,最短距离=两平行线间距离
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询