如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E点F在AC的延长线上,且∠CBF=1/2∠CAB.

1.求证:直线BF是⊙O的切线2.若AB=5,sin∠CBF=五分之根号五,求BC和BF的长... 1.求证:直线BF是⊙O的切线
2.若AB=5,sin∠CBF=五分之根号五,求BC和BF的长
展开
陶永清
2012-01-29 · TA获得超过10.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:66%
帮助的人:8037万
展开全部
1)连AE,
因为AB为直径
所以∠AEB=90
因为AB=AC
所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)
因为∠CBF=(1/2)∠BAC
所以∠CBF=∠BAE
因为∠BAE+∠ABE=90
所以∠ABE+∠CBF=90
因为B在圆上
所以直线BF是⊙O的切线
2)因为∠CBF=∠BAE
所以sin∠CBF=sin∠BAE=BE/AB=BE/5
所以BE=5×√5/5=√5
所以BC=2BE=2√5

在直角三角形ABE中,由勾股定理,得AE=2√5
由△ABC面积不变,得,
AC×BD=BC×AE,
即5BD=2√5*2√5
解得BD=4,
在直角三角形ABD中,由勾股定理,得AD=3,
由∠ADB=∠ABF=90,∠BAD为公共角
得△ABD∽△AFB,,
所以BD/FB=AD/AB
即4/BF=3/5
即得BF=20/3
苒苒物华休less
2012-02-05
知道答主
回答量:31
采纳率:0%
帮助的人:19.2万
展开全部
解:(1)连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.(∠1=∠EAB,.∠2=∠ABE)
∵AB=AC,
∴∠1= 1/2∠CAB.
∵∠CBF= 1/2∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)过点C作CG⊥AB于点G.
∵sin∠CBF= √5/5,∠1=∠CBF,
∴sin∠1= √5/5
∵∠AEB=90°,AB=5,
∴BE=AB•sin∠1= √5,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2 √5,
在Rt△ABE中,由勾股定理得AE=2√ 5,
∴sin∠2= 2√5/5,cos∠2= √5/5,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴ GC/BF=AG/AB
∴BF= GC•AB/AG= 20/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
紫凌雪夕
2012-12-17 · TA获得超过453个赞
知道答主
回答量:91
采纳率:0%
帮助的人:18.6万
展开全部
证明:
连接AD
∵AB是直径
∴∠ADB=90º
∵AB=AC
∴∠B=∠C
∵AEDB四点共圆
∴∠CED=∠B
∴∠C=∠CED
∴DE=DC
∵⊿ABC是等腰三角形,且AD⊥BC,根据三线合一,AD是中垂线
∴BD=DC,即BC=2DC
∴BC=2DE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
死亡前的泪
2012-12-31
知道答主
回答量:23
采纳率:0%
帮助的人:10.2万
展开全部
证明:
连AD,交OP于点Q
(1)∵以AB为直径的圆O交BC于点D
∴∠ADB=90º,即AD⊥BC
∵AB=AC,∠A=30°
∴∠ABC=∠ACB=75°;AD是等腰三角形底边上的高,AD也是BC的中线,即BD=CD
(2)∵以AB为直径的圆O交BC于点D,交AC于点E
∴∠ABC+∠AED=180º,∠CED+∠AED=180º
∴∠ABC=∠CED
∴∠CDE=180º-∠CED-∠ACB=180º-75º-75º=30º
∵BP∥DE
∴∠CBP=∠CDE=30º
∴∠OBP=∠ABC-∠CBP=75º-30º=45º
∵OB=OP
∴∠OPB=45º
∴∠BOP=180º-∠OBP-∠OPB=180º-45º-45º=90º
(3)∵AD是等腰三角形底边上的高,AD也是角平分线,即∠BAD=∠CAD
∵∠A=30°,∠BOP=90º
∴∠PAQ=30º=∠CBP ①
∵∠BOP=90º,OA=OB
∴PA=PA ②
∵AQ=OA/cos∠A/2=AB/(2cos15º),BC=2BD=2ABsin∠A/2=2ABsin15º
∵2sin15º*2cos15º=2sin30º=1即2sin15º=1/(2cos15º)
∴AQ=BC ③
∴由①②③得△PAQ≌△PBC
∴∠BPC=∠APQ=45º
∴∠OPC=∠OPB+∠BPC=45º+45º=90º
∴CP是圆O的切线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式