如图,三角形ABC为等边三角形,D为BC上一点,角ADE=60度,CE平分三角形ACB的外角角ACF,求证:AD=DE
4个回答
展开全部
慕野清流 给出的答案是正确的。 下面从另一个角度给出证明:
∵△ABC是等边三角形,∴∠ACD=60°,∴∠ACF=120°,又∠ACE=∠ECF,
∴∠ACE=∠ECF=60°。
由∠ADE=∠ACE=60°,得:A、D、C、E共圆,
∴∠AED=∠ACD=60°、∠DAE=∠ECF=60°,∴∠AED=∠DAE,∴AD=DE。
∵△ABC是等边三角形,∴∠ACD=60°,∴∠ACF=120°,又∠ACE=∠ECF,
∴∠ACE=∠ECF=60°。
由∠ADE=∠ACE=60°,得:A、D、C、E共圆,
∴∠AED=∠ACD=60°、∠DAE=∠ECF=60°,∴∠AED=∠DAE,∴AD=DE。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询