2个回答
展开全部
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R). 它是初等函数中的一种。它是定义在实数域上的单调、下凸、无上界的可微正值函数。
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凸的。
(4) a大于1时,则指数函数单调递增;若a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过
[指数函数]
指数函数
程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)
(8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凸的。
(4) a大于1时,则指数函数单调递增;若a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过
[指数函数]
指数函数
程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)
(8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是对数运算…………
144=12^2
log(a)b^m=mlog(a)b:log以a为底的b的m次方的对数,等于m倍log以a为底b的对数
log(a^n)b=(1/n)log(a)b:log以a的n次方为底的b的对数
,等于n分之一倍的log以a为底的b的对数
log(a^n)b^m=(m/n)log(a)b:log以a的n次方为底的b的m次方的对数,等于n分之m倍的log以a为底的b的对数……
1/2*1/3log(12)2+1/2*1/6log(12)3
=1/6log(12)2+1/12log(12)3
=1/12(1log(12)2+log(12)3)
=1/12(log(12)4+log(12)3)
=1/12log(12)(4*3)
=1/12log(12)12
=1/12
144=12^2
log(a)b^m=mlog(a)b:log以a为底的b的m次方的对数,等于m倍log以a为底b的对数
log(a^n)b=(1/n)log(a)b:log以a的n次方为底的b的对数
,等于n分之一倍的log以a为底的b的对数
log(a^n)b^m=(m/n)log(a)b:log以a的n次方为底的b的m次方的对数,等于n分之m倍的log以a为底的b的对数……
1/2*1/3log(12)2+1/2*1/6log(12)3
=1/6log(12)2+1/12log(12)3
=1/12(1log(12)2+log(12)3)
=1/12(log(12)4+log(12)3)
=1/12log(12)(4*3)
=1/12log(12)12
=1/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询