4个回答
展开全部
当 a > 1 时
S = ∫<0, 1>(ax-x)dx + ∫<1, a>(ax-x^2)dx
= [(a-1)x^2/2]<0, 1> + [ax^2/2-x^3/3]<1, a>
= (a-1)/2 + a^3/6 - a/2 + 1/3 = (a^3-1)/6 = 7/6, a = 2.
因 ∫<0, 1>(x-x^2)dx = [x^2/2-x^3/3]<0, 1> = 1/6 < 7/6
故 当 0 < a < 1 时 S 不可能是 7/6。
当 a < 0 时,
S = 1/6 + ∫<a, 0>(ax-x^2)dx = 1/6 + [ax^2/2-x^3/3]<a, 0>
= (1-a^3)/6 = 7/6, a^3 = -6, a = -6^(1/3)
S = ∫<0, 1>(ax-x)dx + ∫<1, a>(ax-x^2)dx
= [(a-1)x^2/2]<0, 1> + [ax^2/2-x^3/3]<1, a>
= (a-1)/2 + a^3/6 - a/2 + 1/3 = (a^3-1)/6 = 7/6, a = 2.
因 ∫<0, 1>(x-x^2)dx = [x^2/2-x^3/3]<0, 1> = 1/6 < 7/6
故 当 0 < a < 1 时 S 不可能是 7/6。
当 a < 0 时,
S = 1/6 + ∫<a, 0>(ax-x^2)dx = 1/6 + [ax^2/2-x^3/3]<a, 0>
= (1-a^3)/6 = 7/6, a^3 = -6, a = -6^(1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^2 (1)
y=x (2)
from (1) and (2)
x=x^2
x=0 or 1
y=ax (3)
from (1) and (3)
x^2 = ax
x=0 or a
S
=| ∫(0->a) (ax- x^2) dx -∫(0->1) (x- x^2) dx|
=| [ (1/2)ax^2- (1/3)x^3]|(0->a) -[ (1/2)x^2- (1/3)x^3]|(0->1)|
=| (1/6)a^3 - 1/6)|
S=7/6
|(1/6)a^3 - 1/6)| = 7/6
|a^3-1| =7
a=2 or (-6)^(1/3)
y=x (2)
from (1) and (2)
x=x^2
x=0 or 1
y=ax (3)
from (1) and (3)
x^2 = ax
x=0 or a
S
=| ∫(0->a) (ax- x^2) dx -∫(0->1) (x- x^2) dx|
=| [ (1/2)ax^2- (1/3)x^3]|(0->a) -[ (1/2)x^2- (1/3)x^3]|(0->1)|
=| (1/6)a^3 - 1/6)|
S=7/6
|(1/6)a^3 - 1/6)| = 7/6
|a^3-1| =7
a=2 or (-6)^(1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询