利用高斯公式求解第二类曲面积分的题目,求详细解题过程

 我来答
谯雪旷静
2020-01-13 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:731万
展开全部
用一次高斯公式后剩下的项为对2y+3z的三重积分积分区域为为上述面包围的体积,有对称性对2y的积分为零,只对3z积分,用球坐标代换,角参数为0到二派,负四分之派到四分之派,r=根号2,算得结果为零
真利叶危午
2020-05-11 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:31%
帮助的人:1162万
展开全部
由高斯公式:
被积项是(2xydydz+yzdzdx-z^2dxdy)
=∫∫∫(2y-z)dxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
(对称性,第1个积分0。第2个积分用截面法)
=-∫(0,1)zdz∫∫dxdy-∫(1,√2)zdz∫∫dxdy
=-π[∫(0,1)z^3dz+∫(1,√2)z(2-z^2)dz]
后面很简单,自己试试?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式