数学公式抛物线
展开全部
A(x1,y1),B(x2,y2),A,B在抛物线y²=2px上,则有:
①
直线AB过焦点时,x1x2 =
p²/4
,
y1y2 =
-p²;
(当A,B在抛物线x²=2py上时,则有x1x2 =
-p²
,
y1y2 =
p²/4
,
要在直线过焦点时才能成立)
②
焦点弦长:|AB|
=
x1+x2+P
=
2P/[(sinθ)2]=(x1+x2)/2+P;
③
(1/|FA|)+(1/|FB|)=
2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2
(抛物线上一点P到焦点F的距离等于P到准线L的距离);
⑥弦长公式:AB=√(1+k2)*│x1-x2│;
⑦△=b2-4ac;
⑴△=b2-4ac>0有两个实数根;
⑵△=b2-4ac=0有两个一样的实数根;
⑶△=b2-4ac<0没实数根。
⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;
⑨标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0)
(注:圆锥曲线切线方程中x²=x*x0
, y² =y*y0 , x=(x+x0)/2
,
y=(y+y0)/2
)
扩展资料:
(1)知道抛物线过三个点(x1,y1)(x2,y2)(x3,y3)设抛物线方程为y=ax²+bx+c,将各个点的坐标代进去得到一个三元一次方程组,解得a,b,c的值即得解析式。
(2)知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
(3)知道对称轴x=k,设抛物线方程是y=a(x-k)²+b,再结合其它条件确定a,c的值。
(4)知道二次函数的最值为p,设抛物线方程是y=a(x-k)²+p,a,k要根据其它条件确定。
参考资料:搜狗百科-抛物线
①
直线AB过焦点时,x1x2 =
p²/4
,
y1y2 =
-p²;
(当A,B在抛物线x²=2py上时,则有x1x2 =
-p²
,
y1y2 =
p²/4
,
要在直线过焦点时才能成立)
②
焦点弦长:|AB|
=
x1+x2+P
=
2P/[(sinθ)2]=(x1+x2)/2+P;
③
(1/|FA|)+(1/|FB|)=
2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2
(抛物线上一点P到焦点F的距离等于P到准线L的距离);
⑥弦长公式:AB=√(1+k2)*│x1-x2│;
⑦△=b2-4ac;
⑴△=b2-4ac>0有两个实数根;
⑵△=b2-4ac=0有两个一样的实数根;
⑶△=b2-4ac<0没实数根。
⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;
⑨标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0)
(注:圆锥曲线切线方程中x²=x*x0
, y² =y*y0 , x=(x+x0)/2
,
y=(y+y0)/2
)
扩展资料:
(1)知道抛物线过三个点(x1,y1)(x2,y2)(x3,y3)设抛物线方程为y=ax²+bx+c,将各个点的坐标代进去得到一个三元一次方程组,解得a,b,c的值即得解析式。
(2)知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
(3)知道对称轴x=k,设抛物线方程是y=a(x-k)²+b,再结合其它条件确定a,c的值。
(4)知道二次函数的最值为p,设抛物线方程是y=a(x-k)²+p,a,k要根据其它条件确定。
参考资料:搜狗百科-抛物线
展开全部
标准方程
右开口抛物线:y2=2px
左开口抛物线:y2=
-2px
上开口抛物线:x2=2py
下开口抛物线:x2=-2py
[p为焦准距(p>0)]
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。
它在几何光学和力学中有重要的用处。
抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
右开口抛物线:y2=2px
左开口抛物线:y2=
-2px
上开口抛物线:x2=2py
下开口抛物线:x2=-2py
[p为焦准距(p>0)]
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。
它在几何光学和力学中有重要的用处。
抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抛物线公式:
一般式:y=ax2+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(x-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)
(a≠0)
其中
是抛物线y=ax2+bx+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程ax2+bx+c=0的两实数根。
一般式:y=ax2+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(x-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)
(a≠0)
其中
是抛物线y=ax2+bx+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程ax2+bx+c=0的两实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询