中考题求解答3 5
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边...
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示 - ,并求出当S=36时点A1的坐标;
答案有一步是
s=2(x1-1+x2-1)*3除以2
为什么x1,x2要减1
图 展开
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示 - ,并求出当S=36时点A1的坐标;
答案有一步是
s=2(x1-1+x2-1)*3除以2
为什么x1,x2要减1
图 展开
3个回答
展开全部
(1)已知了O、A、B的坐标,可用待定系数法求出抛物线的解析式,进而可得到其对称轴方程和顶点M的坐标.
(2)在两条直线平移的过程中,梯形的上下底发生了改变,但是梯形的高没有变化,仍为3,即y2-y1=3,可根据抛物线的解析式,用x1、x2表示出y1、y2,然后联立y2-y1=3,可得到第一个关于x1、x2的关系式①;在两条直线平移过程中,抛物线的对称轴没有变化,可用x1、x2以及抛物线的对称轴解析式表示出梯形上下底的长,进而可得到梯形面积的表达式,这样可得到另外一个x1、x2的关系式②,联立两个关系式,即可得到关于(x2-x1)与S的关系式③,将S=36代入②③的关系式中,即可列方程组求得x1、x2的值,进而可求出A点的坐标.
(3)要解答此题,首先要弄清几个关键点:
一、当PQ∥AB时,设直线AB与抛物线对称轴的交点为E,可得△DPQ∽△DBE,可用t表示出DP、DQ的长,而E点坐标易求得,根据相似三角形所得比例线段,即可得到此时t的值即t=
157;
二、当P、Q都停止运动时,显然BC>DM,所以此时t=DM÷1=3
18;
可分两种情况讨论:
①当0<t<
157时,设直线PQ与直线AB的交点为F,与x轴的交点为G;由题意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x轴,则∠DPQ=∠FGA=∠FEQ,由此可证得△DPQ∽△DEB,DB、DE的长已求得,可用t表示出DP、DQ的长,根据相似三角形所得比例线段,即可求得此时t的值;
②当
157<t<3
18时,方法同①;
在求得t的值后,还要根据各自的取值范围将不合题意的解舍去.
(2)在两条直线平移的过程中,梯形的上下底发生了改变,但是梯形的高没有变化,仍为3,即y2-y1=3,可根据抛物线的解析式,用x1、x2表示出y1、y2,然后联立y2-y1=3,可得到第一个关于x1、x2的关系式①;在两条直线平移过程中,抛物线的对称轴没有变化,可用x1、x2以及抛物线的对称轴解析式表示出梯形上下底的长,进而可得到梯形面积的表达式,这样可得到另外一个x1、x2的关系式②,联立两个关系式,即可得到关于(x2-x1)与S的关系式③,将S=36代入②③的关系式中,即可列方程组求得x1、x2的值,进而可求出A点的坐标.
(3)要解答此题,首先要弄清几个关键点:
一、当PQ∥AB时,设直线AB与抛物线对称轴的交点为E,可得△DPQ∽△DBE,可用t表示出DP、DQ的长,而E点坐标易求得,根据相似三角形所得比例线段,即可得到此时t的值即t=
157;
二、当P、Q都停止运动时,显然BC>DM,所以此时t=DM÷1=3
18;
可分两种情况讨论:
①当0<t<
157时,设直线PQ与直线AB的交点为F,与x轴的交点为G;由题意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x轴,则∠DPQ=∠FGA=∠FEQ,由此可证得△DPQ∽△DEB,DB、DE的长已求得,可用t表示出DP、DQ的长,根据相似三角形所得比例线段,即可求得此时t的值;
②当
157<t<3
18时,方法同①;
在求得t的值后,还要根据各自的取值范围将不合题意的解舍去.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询