如图,在平面直角坐标系中,直线y=- 12x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB……

如图,在平面直角坐标系中,直线y=-12x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端... 如图,在平面直角坐标系中,直线y=- 12x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)当b值由小到大变化时,求S与b的函数关系式.
(3)若在直线y=- 12x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.
(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.
展开
超重击布罗利
2012-03-20
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:1)由已知可以得到A(2b,0) , B(0,b) ,C(2b,b) ,D(b,b) CD=b
因为以M(4,0)N(8,0)为斜边的等腰直角三角形△PMN,底边的高和底边中线重合,所以高等于1/2斜边的长,易得 P(6,2)。
2)矩形OABC与三角形PMN重叠部分是四种不同情况,
第一:没重合,S=0 (2≥b>0,OM≥OA)
第二:重合部分是一个以MA为直角边的等腰直角三角形,MA=(2b-4),
S=1/2 ×MA²=1/2(2b-4)² (3≥b>2)
第三:重合部分是△PMN 减去以AN为直角边的等腰直角三角形的那部分,AN=8-2b,S=4-1/2(8-2b)² (4>b>3)
第四:当b≥4时,重合部分是△PMN,S=4
,设Q(x,b- 1/2x),因为∠OQM=90°,O(0,0),M(4,0)所以OQ²+QM²=OM²,
即[ X²+(b- 1/2x)²]+[(x-4)²+(b- 1/2x)²]=4 ²,
整理得5/2X²-(2b+8)X+2b²=0,5/4X²-(b+4)X+b²=0,
根据题意这个方程必须有解,也就是判别式△≥0,即(b+4)²-5b²≥0,-b²+2b+4≥0,b²-2b-4≤0,可以解得 1-√5≤b≤1+√5,由于b>0,所以0<b≤1+√5.
4),△PCD为等腰三角形可分为三种情况:P(6,2),C(2b,b) ,D(b,b)
第一:CP=DP,(6-2b)²+(2-b)²=(6-b)²+(2-b)²所以b=4
第二:CD=CP 则b²=(6-2b)²+(2-b)² ,b²-7 b+10=0, ,解得 b=5(b=2时PCD在一条直线上,不符,舍去)
第三:CD=DP 则b²=(6-b)²+(2-b)², 解得 b=8-2√6 ( b=8+2√6,不符,舍去)
kiss和love婷婷
2012-02-09
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:1)过P作PE垂直x轴于E,则PE=ME=NE=1/2 MN= 2, OE=OM+ME=6,所以P(6,2)
2) 可知y=-0.5x+b交x轴A(2b,0),交y轴点B(0,b)
当2<b<=3时,MA=2b-4,所以S=1/2 (2b-4)^2 = 2b^2 -8b+8
当3<b<=4时,AN=8-2b ,所以S= MPN面积-1/2*AN^2 = 4- 1/2 (8-2b)^2 =-2b^2+16b-28
3)此时,b的最大值应为直线y=-0.5x+b与以OM为直径的圆相切时的值,设此圆心为G,则GQ垂直AB,可知三角形GQA相似三角形BOA,所以由GQ=GM=2可得,QA=4,所以GA=2根5
所以2b=2+2根5, 所以b=1+根5 , 所以0<b<=1+根5
4)△PCD为等腰三角形时,分三种情况PC=CD、PC=PD、CD=DP计算
得b=8-2根6或b=4或b=5
追问
当2<b<=3时,MA=2b-4,所以S=1/2 (2b-4)^2 = 2b^2 -8b+8
当3<b<=4时,AN=8-2b ,所以S= MPN面积-1/2*AN^2 = 4- 1/2 (8-2b)^2 =-2b^2+16b-28

这取值范围是怎么得出的?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
岩石中的竹
2012-02-10
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
直线是y=- 12x+b还是y=- 1/2x+b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sxaavmdo63
2012-02-09
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
gfch
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式