通分:(1)x/x²+2xy+y²与y/x+y (2)x+4/x²+4x与x-5/x(x-5)-2(x-5)
2个回答
展开全部
通分:(1)x/x²+2xy+y²与y/x+y
x/x²+2xy+y²=x/(x+y)²
y/x+y =[y(x+y)]/(x+y)²
(2)x+4/x²+4x与x-5/x(x-5)-2(x-5)
∵x+4/x²+4x=(x+4)/[x(x+4)]=1/x
x-5/x(x-5)-2(x-5)=(x-5)/[(x-5)(x-2)]=1/(x-2)
∴x+4/x²+4x=1/x=(X-2)/[x(x-2)]
x-5/x(x-5)-2(x-5)=1/(x-2)=x/[x(x-2)]
x/x²+2xy+y²=x/(x+y)²
y/x+y =[y(x+y)]/(x+y)²
(2)x+4/x²+4x与x-5/x(x-5)-2(x-5)
∵x+4/x²+4x=(x+4)/[x(x+4)]=1/x
x-5/x(x-5)-2(x-5)=(x-5)/[(x-5)(x-2)]=1/(x-2)
∴x+4/x²+4x=1/x=(X-2)/[x(x-2)]
x-5/x(x-5)-2(x-5)=1/(x-2)=x/[x(x-2)]
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询