为什么AB的行列式等于A的行列式乘B的行列式?
当A与B是同阶方阵时,|AB|=|A||B|,这是一个基本性质。首先要保证a*b是一个方阵,这需要a的行(列)数=b的列(行)数当a和b都是同阶方阵的时候,命题成立。
当a和b不同阶的时候,如果a的列多余a的行,那么a*b行列式为零如果a的列少于a的行,设a的列数为n,那么a*b行列式等于“a的n阶子方阵行列式*b对应n阶子方阵行列式”取遍引号中a的所有可能的n阶子阵然后加起来。
首先容易证明:当A或B为初等阵时等式成立。
由于满阵都可以由初等阵化来,所以可以写成:
A=P1P2P3...PnA0Q1Q2...Qm,其中A0为A的对角化标准阵,易知|A0B|=|A0|*|B|,所以:
|AB|=|P1P2P3...PnA0Q1Q2...QmB|
=|P1||P2||P3|...|Pn||A0Q1Q2...QmB|
=|P1||P2||P3|...|Pn||A0||Q1||Q2|...|Qm||B|
=|A||B|
补充:|A0|=|A|,初等阵的行列式=1
|AB|=|A||B|用两次拉普拉斯公式即证,可以自己设二阶矩阵照我这种方法验证。
对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开。
2024-07-24 广告