正定矩阵的充要条件是什么?
1个回答
展开全部
正定矩阵的充分必要条件如下:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。
正定矩阵有以下性质:
1、正定矩阵的行列式恒为正;
3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;
4、两个正定矩阵的和是正定矩阵;
5、正实数与正定矩阵的乘积是正定矩阵。
在线性代数里,正定矩阵有时会简称为正定阵。正定矩阵的性质类似复数中的正实数,与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。
正定矩阵:
(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
参考资料来源:百度百科-正定矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询