求∫[x/(1+x+x^2)]dx,
展开全部
原式=∫{x/[(x+1/2)^2+3/4]}dx
=∫{[(x+1/2)-1/2]/[(x+1/2)^2+3/4]}d(x+1/2).
令x+1/2=u,则:
原式=∫[(u-1/2)/(u^2+3/4)]du
=∫[u/(u^2+3/4)]du-(1/2)∫[1/(u^2+3/4)]du.
令u=(√3/2)t,则t=(2√3/3)u,du=(√3/2)dt,得:
原式=∫{(√3/2)t/[(3/4)t^2+3/4]}(√3/2)dt
-(1/2)∫{1/[(3/4)t^2+3/4]}(√3/2)dt
=∫[t/(t^2+1)]dt-(√3/3)∫[1/(t^2+1)]dt
=(1/2)∫[1/(t^2+1)]d(t^2+1)-(√3/3)arctant
=(1/2)ln(t^2+1)-(√3/3)arctan[(2√3/3)u]+C
=(1/2)ln(4u^2/3+1)-(√3/3)arctan(2√3u/3)+C
=(1/2)ln(4u^2+3)-(1/2)in3-(√3/3)arctan(2√3u/3)+C
=(1/2)ln[4(x+1/2)^2+3]-(√3/3)arctan[2√3(x+1/2)/3)+C
=(1/2)ln(4x^2+4x+4)-(√3/3)arctan[(2√3x+√3)/3]+C
=(1/2)ln(x^2+x+1)+(1/2)ln4-(√3/3)arctan[(2√3x+√3)/3]+C
=(1/2)ln(x^2+x+1)-(√3/3)arctan[(2√3x+√3)/3]+C
=∫{[(x+1/2)-1/2]/[(x+1/2)^2+3/4]}d(x+1/2).
令x+1/2=u,则:
原式=∫[(u-1/2)/(u^2+3/4)]du
=∫[u/(u^2+3/4)]du-(1/2)∫[1/(u^2+3/4)]du.
令u=(√3/2)t,则t=(2√3/3)u,du=(√3/2)dt,得:
原式=∫{(√3/2)t/[(3/4)t^2+3/4]}(√3/2)dt
-(1/2)∫{1/[(3/4)t^2+3/4]}(√3/2)dt
=∫[t/(t^2+1)]dt-(√3/3)∫[1/(t^2+1)]dt
=(1/2)∫[1/(t^2+1)]d(t^2+1)-(√3/3)arctant
=(1/2)ln(t^2+1)-(√3/3)arctan[(2√3/3)u]+C
=(1/2)ln(4u^2/3+1)-(√3/3)arctan(2√3u/3)+C
=(1/2)ln(4u^2+3)-(1/2)in3-(√3/3)arctan(2√3u/3)+C
=(1/2)ln[4(x+1/2)^2+3]-(√3/3)arctan[2√3(x+1/2)/3)+C
=(1/2)ln(4x^2+4x+4)-(√3/3)arctan[(2√3x+√3)/3]+C
=(1/2)ln(x^2+x+1)+(1/2)ln4-(√3/3)arctan[(2√3x+√3)/3]+C
=(1/2)ln(x^2+x+1)-(√3/3)arctan[(2√3x+√3)/3]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询