如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.
如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线C1准线的距离.(...
如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.
(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.
(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由. 展开
(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.
(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由. 展开
展开全部
(Ⅰ)因为抛物线 C1准线的方程为:y=- 1/4,
所以圆心M到抛物线 C1准线的距离为:|- 1/4-(-3)|= 11/4.
(Ⅱ)设点P的坐标为(x0,x02),抛物线 C1在点P处的切线交直线l与点D,
因为:y=x2,所以:y′=2x;
再设A,B,D的横坐标分别为xA,xB,xD,
∴过点P(x0,x02)的抛物线 C1的切线的斜率k=2x0.
过点P(x0,x02)的抛物线 C1的切线方程为:y-x02=2x0(x-x0) ①
当 x0=1时,过点P(1,1)且与圆C2相切的切线PA方程为:y-1= 15/8(x-1).可得xA=- 17/15,xB=1,xD=-1,xA+xB≠2xD.
当x0=-1时,过点P(-1,1)且与圆C2的相切的切线PB的方程为:y-1=- 15/8(x+1).可得xA=-1,xB= 17/15,xD=1,xA+xB≠2xD.
所以x02-1≠0.设切线PA,PB的斜率为k1,k2,
则:PA:y-x02=k1(x-x0) ②
PB:y-x02=k2(x-x0).③
将y=-3分别代入①,②,③得 xD=x02-3/2x0(x0≠0); xA=x0-x02+3/k1; xB=x0-x02+3/k2(k1,k2≠0)
从而 xA+xB=2x0-(x02+3)(1/k1+1/k2).
又 |-x0k1+x02+3|/√k12+1=1,
即(x02-1)k12-2(x02+3)x0k1+(x02+3)2-1=0,
同理(x02-1)k22-2(x02+3)x0k2+(x02+3)2-1=0,,
所以k1,k2是方程(x02-1)k2-2(x02+3)x0k+(x02+3)2-1=0的两个不等的根,
从而k1+k2= 2(3+x0)2x0/x02-1,k1?k2= (3+x02)2-1/x02-1,,
因为xA+xB=2XD..
所以2x0-(3+x02)( 1/k1+1/k2)= x02-3/x0,即 1/k1+1/k2= 1/x0.
从而 2(3+x02)x0/(x02+3)2-1=1/x0,
进而得x0?=8, x0=±⁴√84.
综上所述,存在点P满足题意,点P的坐标为( ±⁴√84,2 √2).
所以圆心M到抛物线 C1准线的距离为:|- 1/4-(-3)|= 11/4.
(Ⅱ)设点P的坐标为(x0,x02),抛物线 C1在点P处的切线交直线l与点D,
因为:y=x2,所以:y′=2x;
再设A,B,D的横坐标分别为xA,xB,xD,
∴过点P(x0,x02)的抛物线 C1的切线的斜率k=2x0.
过点P(x0,x02)的抛物线 C1的切线方程为:y-x02=2x0(x-x0) ①
当 x0=1时,过点P(1,1)且与圆C2相切的切线PA方程为:y-1= 15/8(x-1).可得xA=- 17/15,xB=1,xD=-1,xA+xB≠2xD.
当x0=-1时,过点P(-1,1)且与圆C2的相切的切线PB的方程为:y-1=- 15/8(x+1).可得xA=-1,xB= 17/15,xD=1,xA+xB≠2xD.
所以x02-1≠0.设切线PA,PB的斜率为k1,k2,
则:PA:y-x02=k1(x-x0) ②
PB:y-x02=k2(x-x0).③
将y=-3分别代入①,②,③得 xD=x02-3/2x0(x0≠0); xA=x0-x02+3/k1; xB=x0-x02+3/k2(k1,k2≠0)
从而 xA+xB=2x0-(x02+3)(1/k1+1/k2).
又 |-x0k1+x02+3|/√k12+1=1,
即(x02-1)k12-2(x02+3)x0k1+(x02+3)2-1=0,
同理(x02-1)k22-2(x02+3)x0k2+(x02+3)2-1=0,,
所以k1,k2是方程(x02-1)k2-2(x02+3)x0k+(x02+3)2-1=0的两个不等的根,
从而k1+k2= 2(3+x0)2x0/x02-1,k1?k2= (3+x02)2-1/x02-1,,
因为xA+xB=2XD..
所以2x0-(3+x02)( 1/k1+1/k2)= x02-3/x0,即 1/k1+1/k2= 1/x0.
从而 2(3+x02)x0/(x02+3)2-1=1/x0,
进而得x0?=8, x0=±⁴√84.
综上所述,存在点P满足题意,点P的坐标为( ±⁴√84,2 √2).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询