4年级50奥数题及答案

200分(⊙o⊙)哦... 200分(⊙o⊙)哦 展开
woxgc
2012-02-13 · TA获得超过1968个赞
知道答主
回答量:108
采纳率:0%
帮助的人:68.6万
展开全部
1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3

=45+15

=60(千克)

答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4

=8÷4

=2(千米)

答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]

=0.6÷[13-20÷2]

=0.6÷3

=0.2(元)

答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2

=255(千米)

答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5- 3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:

(32.5×2+5)÷(4+1)

=(65+5)÷5

=70÷5

=14(吨)

甲仓存粮:

14×4-5

=56-5

=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:

(400-10×4)÷(4+5)

=(400-40)÷9

=360÷9

=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:

(455-30×6)÷(6+5)

=(455- 180)÷11

=275÷11

=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(75- 65)]

=140×[40÷10]

=140×4

=560(千米)

答:甲乙两地相距 560千米
11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

解:(20×250-4400)÷(10+20)

=600÷120

=5(箱)

答:损坏了5箱。

12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

解:4×2÷(12-4)

=4×2÷8

=1(时)

答:第二中队1小时能追上第一中队。

13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)

=2500÷500

=5(天)

这堆煤的重量:

1500×(5-1)

=1500×4

=6000(千克)

答:这堆煤有6000千克。

14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

也可以用方程解:

设一枝铅笔X元,则一本练习本为 元。

8X+5×=3.8-0.45

64X+19-25X=30.4-3.6

39X=7.8

X=0.2

答:每支铅笔0.2元。

15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解:卡车的数量:

360÷[10×6÷(8-6)]

=360÷[10×6÷2]

=360÷30

=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]

=360÷[30+10]

=360÷40

=9(辆)

答:可用卡车12辆,客车9辆。

16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:

(720×3-1200)÷80

=960÷80

=12(天)

公路全长:

(720+80)×12+1200

=800×12+1200

=9600+1200

=10800(米)

答:这条公路全长10800米。

17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋

150双

18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

答:运进水泥180袋,沙子360袋。

19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的价钱:

3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

答:这两个加数分别是52和520。

21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

解:9-(16-9)

=9-7

=2(千克)

答:桶重2千克。

22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

解:(10-5.5)×2=9(千克)

答:原来有油9千克。

23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

解:(22-10)÷(5-2)

=12÷3

=4(千克)

答:桶里原有水4千克。

24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

答:原来小红有23本,小华有13本。

25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

解:15×5÷(5-2)=25(千克)

答:原来每桶油重25千克。

26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

解:9÷(3-1)×(5-1)=18(分)

答:锯成5段需要18分钟。

27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

解:35÷(2-1)=35(人)

女工原有:

35+17=52(人)

男工原有:

52+35=87(人)

答:原有男工87人,女工52人。

28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

解:12×5÷(5+1)=10(千米)

答:返回时平均每小时行10千米。

29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

解:18÷(5+4)=2(小时)

8×2=16(千米)

答:狗跑了16千米。

30、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

解:总个数:

(21+20+19)÷2=30(个)

白球:30-21=9(个)

红球:30-20=10(个)

黄球:30-19=11(个)

答:白球有9个,红球有10个,黄球有11个。
31、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

解:(33-18)÷(5-2)=5(米)

18-5×2=8(米)

答:一根粗钢管长8米,一根细钢管长5米。

32、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

解:4.8×10÷(12-10)=24(吨)

答:原计划每天生产水泥24吨。

33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。

解:70+30-80

=100-80

=20(人)

答:既唱歌又跳舞的有20人。

34、想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语 文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。

解:36+38+5-59=20(人)

答:双科都参加的有20人。

35、想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

解:5×(4÷2)+6=16(把)

640÷16=40(元)

40×5÷2=10O(元)

答:桌子和椅子的单价分别是100元、40元。

36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

解:(45-5)÷4+5

=10+5

=15(岁)

答:今年儿子15岁。

37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

解:18×2÷(4-1)=12(千克)

12×4=48(千克)

答:原来甲桶有油48千克,乙桶有油12千克。

38、想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

解:(5×20-75)÷8=2(题)……5(分)

20-2-1=17(题)

答:答对17题,答错2题,有1题没答。

39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

解:(240+264)÷(20+16)

=504÷30

=14(秒)

答:从两车头相遇到两车尾相离,需要14秒。

40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

解:(600+1150)÷700

=1750÷700

=2.5(分)

答:火车通过隧道需2.5分。

41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

解:60×2÷(60-50)=12(分)

50×12=600(米)

答:小明从家里到学校是600米。

42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

解:600÷(400-300)

=600÷100

=6(分)

答:经过6分钟两人第一次相遇

43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

解:(12÷2)×(8÷2)=24(平方厘米)

答:这个长方形纸板原来的面积是24平方厘米。

44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

解:(20-7.4)÷3-2.4

=12.6÷3-2.4

=4.2-2.4

=1.8(元)

答:每千克梨1.8元。

45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

解:135÷3÷(2+1)=15(千米)

15×2=30(千米)

答:甲乙每小时分别行30千米、15千米。

46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

解:12÷(8-5)=4(次)

8×4+5×4+12=64(个)

或8×4×2=64(个)

答:一共取了4次,盒子里共有64个球。

47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

解:12和18的最小公倍数是36

6时+36分=6时36分

答:下次同时发车时间是上午6时36分。

48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

解:(45-15)÷(11-1)=3(岁)

15-3=12(年)

答:12年前父亲的年龄是儿子年龄的11倍。

49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

解:2、3、4、5的最小公倍数是60

60-1=59(支)

答:这盒铅笔最少有59支。

50、想:根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

解:(40÷5)×(40÷8)=40(平方米)

答:平行四边形地原来的面积是40平方米。
M先森的小店
2012-02-13 · 超过16用户采纳过TA的回答
知道答主
回答量:77
采纳率:87%
帮助的人:19.5万
展开全部
1.已知八个连续奇数的和是144,求这八个连续奇数。

2.张阿姨给幼儿园两个班的孩子分水果,大班每人分得5个橘子和2个苹果,小班每人分得3个橘子和2个苹果.张阿姨一共分出了135个橘子和70个苹果,那么小班有多少个孩子?

3.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
4.小熊、小马、小牛、和小鹿各拿一只水桶同时到一个水龙头前接水,它们只能一个接一个地接水。小熊接一桶水要5分钟,小马要3分钟,小牛要7分钟,小鹿要2分钟。
(1)要使它们等候时间(等候时间包括接水时间)的总和最少,应该怎样安排它们的接水顺序?(2)它们等候时间的总和最少是多少分钟?

5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?

6. 甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?

7.某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有________张。
8.1ABCDE×3=ABCDE1,求A、B、C、D、E。
9.找规律76,2,75,3,74,4,(),();
10.有五种颜色的小旗,任意取出三面排成一行表示各种信号。问:共可以表示多少种不同的信号?
11.在一星期的七天中,狼在星期一、二、三讲假话,其余各天都讲真话;狐狸在星期四、五、六讲假话,其余各天都讲真话。
①狼说:“昨天是我说谎日子.”狐狸说:“昨天也是我说谎的日子。”那么今天星期 。
②一天狼和狐狸都化了装,使人不容易辨认它们。
一个说:“我是狼。”另一个说:“我是狐狸。”
先说的是_______,这一天是星期_______。

12.数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:“小明得金牌;小华不得金牌;小强不得铜牌.”结果王老师只猜对了一个。那么小明得_____牌,小华得_____牌,小强得_____牌。

13.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
14.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等。兔子跳出550米后狗子才开始追赶。问狗跳了多远才能追上兔子?

15.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。求这列火车的速度是______米/秒,全长是_____米。

16.某校有100名学生参加数学考试,平均分是63分,其中男生平均分是60分,女同学的平均分是70分,男生比女生多_______人。

17.某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有________张。
18.有一个横竖距离相等的5×4矩形钉阵.用橡皮筋去套,你能套出( )个不同的正方形。
19.在圆周上任意给定6个点,在圆内再选4个点,使得以这10个点为顶点构成尽可能多的彼此不重叠的三角形。这些三角形最多有多少个?
20.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度。
21.第一题:平均数问题
如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是______岁。
22.学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元。
23.在一个圆周上,有A1 A2 A3……A1010个点,问一共能画出( )条线段(以这10个点为端点)。
24.用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?
25.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时。
26.规定x△y=xA+(x+y)/xy ,而且1△2=2△3,求3△4的值。
27.小明和小刚赛跑,限定时间为10秒,谁跑的距离长谁胜.小刚第一秒跑了1米,以后每秒都比前面一秒多跑0.1米;小明从始至终每秒都跑1.5米。问两人谁能取胜?
28.一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成。
29.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有________天是雨天。

30.
用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?

31.在一个图案中有100个矩形、100个菱形和40个正方形,这个图案中至少有多少个平行四边形?
32. 静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?

33.小悦中午做烧豆腐,共需要七道工序,每道工序的时间如下:切豆腐2分钟,切肉片2分钟,准备葱姜蒜3分钟,准备佐料1分钟,烧热锅2分钟,烧热油2分钟,炒菜4分钟.那么小悦烧好这道菜最短需要多少分钟?

34.东湖路小学三年级举行数学竞赛,20道试题.做对一题得5分,没有做一题或做错一题都要倒扣3分.刘钢得了60分,问他做对了几道题?

35.9个连续的自然数中,最多有多少个质数?并写出来。
36.用一批纸装订一种练习本.第一天装订了120本,还剩全部纸张的 ;第二天又装订了65本,还剩下1350张纸.这批纸原来一共有多少张?

37.在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?

38.有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱?

39.9×17+91÷17-5×17+45÷17

40.六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?
41. 7个数的平均数是29,把7个数排成一列,前3个数的平均数是25,后5个数的平均数为38,则第三个数是多少?

42.有一个四位整数12()() ,如果要让这个四位数同时能被4、5、9整除,那么这个四位数的末两位上应是什么数?

43.甲车在东村、乙车在西村,甲乙两车同时从东西两村相向而行,第一次在距东村10km的地方相遇,相遇后两车又各自向对方出发点驶去,甲到西村后又立即返回,乙到东村后也立即返回,两车又在距西村6km的地方第二次相遇,求东西村相距多少千米?
44.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?

45.把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?

46.计算
3-1+7-4+11-7+15-10+…-70+99

47. 甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
48.把自然数1至2009依次写成一排,得到一个多位数12345678910111213…20082009.
请问:(1)这个多位数一共有多少位?
(2)从左向右数,这个多位数的第2009个数字是多少?

49. 甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?

50.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?

51.00到200之间不能被3整除的数之和是多少?

52.学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本67.,养一张蚕需要600千克桑叶,可以产茧50千克,小丽家养了4张蚕需要多少
53.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

54.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
55. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.

妈啊,累死我了,选用我就给你解法
+QQ1256523584
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天才田俊
2012-02-17 · TA获得超过3902个赞
知道小有建树答主
回答量:871
采纳率:0%
帮助的人:870万
展开全部
对不起朋友,您要找答案的话我爱莫能助。本来作业就是有对有错的,要想达到完美必定需要强大的实力来造就。很抱歉答案找起来有一定困难,不过,你要有什么数学问题不懂可以来问我,我一定全力解答。不管怎样,这也就是学习的目的,你说呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
理财20111107
2012-02-13 · TA获得超过132个赞
知道答主
回答量:120
采纳率:0%
帮助的人:39.6万
展开全部
第一题:11.13.15.17.19.21.23.25.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
263501581QCK
2012-02-13
知道答主
回答量:66
采纳率:0%
帮助的人:10.7万
展开全部
小弟的疑
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式