等差数列an的首项a1为a,公差d=2,前n项和为Sn (1)若S1,S2,S4成等比数列,求数列an的通项公式 (2)... 40
等差数列an的首项a1为a,公差d=2,前n项和为Sn(1)若S1,S2,S4成等比数列,求数列an的通项公式(2)证明:存在任意正整数n,Sn,Sn+1,Sn+2不构成...
等差数列an的首项a1为a,公差d=2,前n项和为Sn
(1)若S1,S2,S4成等比数列,求数列an的通项公式
(2)证明:存在任意正整数n,Sn,Sn+1,Sn+2不构成等比 展开
(1)若S1,S2,S4成等比数列,求数列an的通项公式
(2)证明:存在任意正整数n,Sn,Sn+1,Sn+2不构成等比 展开
4个回答
展开全部
(1,),an=a+2(n+1)
Sn=(a1+an)n/2
S2*S2=S1*S4
(2a+2)*(2a+2)=a*(4a+12)
解得 a=1
an=2n-1
(2)Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1)-1]=[(n+1)(n+1)-1]
所以Sn的平方不可能等于Sn+1*Sn+2;
故存在任意正整数n,Sn,Sn+1,Sn+2不构成等比
Sn=(a1+an)n/2
S2*S2=S1*S4
(2a+2)*(2a+2)=a*(4a+12)
解得 a=1
an=2n-1
(2)Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1)-1]=[(n+1)(n+1)-1]
所以Sn的平方不可能等于Sn+1*Sn+2;
故存在任意正整数n,Sn,Sn+1,Sn+2不构成等比
展开全部
S1=a S2=a+(a+2)=2a+2 S=4a+4*(4-1)*2/2=4a+12
a(4a+12)=4a^2+8a+4 a=1 an=1+2*(n-1)=2n-1
a(4a+12)=4a^2+8a+4 a=1 an=1+2*(n-1)=2n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1,),an=a+2(n+1)
Sn=(a1+an)n/2
S2*S2=S1*S4
(2a+2)*(2a+2)=a*(4a+12)
解得 a=1
an=2n-1
(2)Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1)-1]=[(n+1)(n+1)-1]
所以Sn的平方不可能等于Sn+1*Sn+2;
故存在任意正整数n,Sn,Sn+1,Sn+2不构成等比
Sn=(a1+an)n/2
S2*S2=S1*S4
(2a+2)*(2a+2)=a*(4a+12)
解得 a=1
an=2n-1
(2)Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1)-1]=[(n+1)(n+1)-1]
所以Sn的平方不可能等于Sn+1*Sn+2;
故存在任意正整数n,Sn,Sn+1,Sn+2不构成等比
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询