2个回答
展开全部
(1)∵x>0,2-x>0,
∴x属于(0,2)
f'(x)=1/x+1/(x-2)+1=x^2-2
令f'(x)=0
解得x=√2或-√2
∴(0,√2)递减(f'(x)<0)
(√2,2)递增。
(2)f(x)=lnx+ln(2-x)+ax
=lnx(2-x)+ax
=ln[1+(2x-x^2-1)]+ax
=ln[1-(x-1)^2]+ax
显然,f(x)在定义域内为增函数
所以,当x=1时,f(x)取最大值1/2
所以 f(x)=ln1+ln(2-1)+a =1/2
a=1/2
∴x属于(0,2)
f'(x)=1/x+1/(x-2)+1=x^2-2
令f'(x)=0
解得x=√2或-√2
∴(0,√2)递减(f'(x)<0)
(√2,2)递增。
(2)f(x)=lnx+ln(2-x)+ax
=lnx(2-x)+ax
=ln[1+(2x-x^2-1)]+ax
=ln[1-(x-1)^2]+ax
显然,f(x)在定义域内为增函数
所以,当x=1时,f(x)取最大值1/2
所以 f(x)=ln1+ln(2-1)+a =1/2
a=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询