如图,抛物线经过A(-1,0)B(5,0)C(0,-5/2)三点(1)求抛物线的解析式.(2)在抛
物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点...
物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标 (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标,若不存在,请说明理由
展开
1个回答
展开全部
(1)用交点式y=a(x-x1)(x-x2)得到y=a(x-4)(x-1),再将(0,-2)代入y=a(x-4)(x-1)中,得到a=-1/2.即得抛物线方程y=-1/2(x-4)(x-1)
(2)存在点P,设P(x,y)此处y不等于0,(因为等于0时不能形成△APM)由已知可得在△OAC中,OA=4,OC=2,所以△APM∽△OAC,有两种情况:
1.当AM/OA=PM/OC,即(4-x)/4=y/2,再联立y=-1/2(x-4)(x-1) ,解得y=1,所以x=3,即P(3,1);
2.当AM/OC=PM/OA,即得(4-x)/2=y/4,再联立y=-1/2(x-4)(x-1) ,解得x=4(舍去,因为代入y=0),x=5,代入得到对应的y=-2,即P(4,-2)
(2)存在点P,设P(x,y)此处y不等于0,(因为等于0时不能形成△APM)由已知可得在△OAC中,OA=4,OC=2,所以△APM∽△OAC,有两种情况:
1.当AM/OA=PM/OC,即(4-x)/4=y/2,再联立y=-1/2(x-4)(x-1) ,解得y=1,所以x=3,即P(3,1);
2.当AM/OC=PM/OA,即得(4-x)/2=y/4,再联立y=-1/2(x-4)(x-1) ,解得x=4(舍去,因为代入y=0),x=5,代入得到对应的y=-2,即P(4,-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询