设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象

设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.... 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )A.B.C.D. 展开
 我来答
归博超049
推荐于2016-03-06 · 超过61用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:140万
展开全部
∵函数f(x)在x=-2处取得极小值,∴f′(-2)=0,
且函数f(x)在x=-2左侧附近为减函数,在x=-2右侧附近为增函数,
即当x<-2时,f′(x)<0,当x>-2时,f′(x)>0,
从而当x<-2时,y=xf′(x)>0,当-2<x<0时,y=xf′(x)<0,
对照选项可知只有C符合题意
故选 C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式