条件极值的问题

当x>0,y>0,z>0,求函数f(x,y,z)=lnx+2lny+3lnz在球面x^2+y^2+z^2=6R^2上的极大值并由此证明当a,b,c为正实数时,不等式ab^... 当x>0,y>0,z>0,求函数f(x,y,z)=lnx+2lny+3lnz在球面x^2+y^2+z^2=6R^2上的极大值
并由此证明当a,b,c为正实数时,不等式ab^2c^3<=108[(a+b+c)/6]^6成立。
答对加悬赏20
谢谢
展开
strongestid
2012-03-10 · TA获得超过906个赞
知道小有建树答主
回答量:327
采纳率:0%
帮助的人:151万
展开全部
建立辅助函数L(x,y,z,k)=lnx+2lny+3lnz+k(x^2+y^2+z^2-6R^2),然后分别求L对x、y、z、k的偏导数,并令这些偏导数为零,解方程组,求出x、y、z,即为极大值点的坐标。f(x,y,z)=lnx+2lny+3lnz=ln(xy^2z^3),所以xy^2z^3=e^f<=e^(f的最大值)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式