1/(1-x^2)^3/2的不定积分是怎么求的啊,急,还有x^3/(1+x^2)3/2的不定积分
展开全部
∫dx/√(1-x^2)^3
=∫dx/[x^3√(1/x^2-1)^3
=(-1/2)∫d(1/x^2)/√(1/x^2-1)^3
=1/√(1/x^2-1)+C
∫x^3dx/(1+x^2)^(3/2)
=(1/2)∫x^2d(x^2)/(1+x^2)^(3/2)
=(1/2)∫dx^2/(1+x^2)^(1/2)-(1/2)∫dx^2/(1+x^2)^(3/2)
=√(1+x^2)+1/√(1+x^2)+C
=∫dx/[x^3√(1/x^2-1)^3
=(-1/2)∫d(1/x^2)/√(1/x^2-1)^3
=1/√(1/x^2-1)+C
∫x^3dx/(1+x^2)^(3/2)
=(1/2)∫x^2d(x^2)/(1+x^2)^(3/2)
=(1/2)∫dx^2/(1+x^2)^(1/2)-(1/2)∫dx^2/(1+x^2)^(3/2)
=√(1+x^2)+1/√(1+x^2)+C
追问
可以用第二换元法解吗,这个不太明白
追答
1
x=sinu
∫du/cosu^2=tanu=x/√(1-x^2)=1/√(1/x^2-1)
2
x=tanu
=∫tanu^3du/secu
=∫sinu^3du/cosu^2
= -∫sinu^2dcosu/cosu^2
=∫(cosu^2-1)dcosu/cosu^2
=cosu+1/cosu
=1/√(1+x^2)+√(1+x^2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询