如何计算三角函数的最大最小值
1、化为一个三角函数
如:f(x)=sinx+√3cosx=2sin(x+π/3)
最大值是2,最小值是-2
如:f(x)=cosx+cos2x=cosx+2cos²x-1=2t²+t-1 【其中t=cosx∈[-1,1]】
则f(x)的最大值是当t=cosx=1时取得的,是2,最小值是当t=cosx=-1/4时取得的,是-9/8
扩展资料
寻找函数最大值和最小值
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。
因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
三角函数的定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²;+b²;) , c+√(a²;+b²;)]
周期T=2π/ω
参考资料:百度百科-三角函数
这种情况下最大值为A,最小值为-A.
看懂了吗?cos也是一样的
2016-10-04 · 知道合伙人教育行家
你可以令t=2x-π/6 则sin(2x-π/6)=sin(t)
也就是使sinx和sint有相同的形式
t=π/2时 sint 即sin(2x-π/6)有最大值
此时2x-π/6=t=π/2 so x=π/3
求sint的单调区间得出关于t的区间
然后再根据t=2x-π/6即可算出sin(2x-π/6)关于x的单调区间
sint t=不论是sinx还是sin(2x-π/6) 都是三角函数f(x)=sin(x)的几种形式
你可以令t=2x-π/6 则sin(2x-π/6)=sin(t)
也就是使sinx和sint有相同的形式
t=π/2时 sint 即sin(2x-π/6)有最大值
此时2x-π/6=t=π/2 so x=π/3
求sint的单调区间得出关于t的区间
然后再根据t=2x-π/6即可算出sin(2x-π/6)关于x的单调区间
t=90度 求最大值点阿