求x*arctan根号xdx的不定积分 5
展开全部
∫ x * arctan√x dx
= ∫ arctan√x d(x²/2)
= (x²/2)arctan√x - (1/2)∫ x² d(arctan√x),分部积分法
= (x²/2)arctan√x - (1/2)∫ x² * 1/(1 + x) * 1/2√x dx
= (x²/2)arctan√x - (1/4)∫ x^(3/2)/(1 + x) dx,令u² = x,2udu = dx
= (x²/2)arctan√x - (1/2)∫ u^4/(1 + u²) du
= (x²/2)arctan√x - (1/2)∫ [u² - 1 + 1/(1 + u²)] du
= (x²/2)arctan√x - (1/2)(u³/3) + (1/2)u - (1/2)arctan(u) + C
= (x²/2)arctan√x - (1/6)x^(3/2) + (1/2)√x - (1/2)arctan√x + C
= (1/2)(x² - 1)arctan√x - (1/6)(x - 3)√x + C
= ∫ arctan√x d(x²/2)
= (x²/2)arctan√x - (1/2)∫ x² d(arctan√x),分部积分法
= (x²/2)arctan√x - (1/2)∫ x² * 1/(1 + x) * 1/2√x dx
= (x²/2)arctan√x - (1/4)∫ x^(3/2)/(1 + x) dx,令u² = x,2udu = dx
= (x²/2)arctan√x - (1/2)∫ u^4/(1 + u²) du
= (x²/2)arctan√x - (1/2)∫ [u² - 1 + 1/(1 + u²)] du
= (x²/2)arctan√x - (1/2)(u³/3) + (1/2)u - (1/2)arctan(u) + C
= (x²/2)arctan√x - (1/6)x^(3/2) + (1/2)√x - (1/2)arctan√x + C
= (1/2)(x² - 1)arctan√x - (1/6)(x - 3)√x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询