设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值
展开全部
解:由f(x)=sinx-cosx+x+1
得:f'(x)=cosx+sinx+1
=√2(sinπ/4cosx+cosπ/4sinx)+1
=√2sin(x+π/4)+1
令f‘(x)<0得:
√2sin(x+π/4)+1<0
sin(x+π/4)<-√2/2
kπ-3π/4<x+π/4<kπ-π/4
则2kπ-π<x<2kπ-π/2 (k∈Z)
又0<x<2π
所以当π<x<3π/2时,f’(x)<0,f(x)为单调递减
同理得:当0<x<π或3π/2<x<2π时,f’(x)>0,f(x)为单调递增
即f(x)单调增区间(0,π),(3π/2,2π)
单调减区间(π,3π/2 )
由单调性可得:f极大值=f(π)=2+π
f极小值=f(3π/2)=3π/2
得:f'(x)=cosx+sinx+1
=√2(sinπ/4cosx+cosπ/4sinx)+1
=√2sin(x+π/4)+1
令f‘(x)<0得:
√2sin(x+π/4)+1<0
sin(x+π/4)<-√2/2
kπ-3π/4<x+π/4<kπ-π/4
则2kπ-π<x<2kπ-π/2 (k∈Z)
又0<x<2π
所以当π<x<3π/2时,f’(x)<0,f(x)为单调递减
同理得:当0<x<π或3π/2<x<2π时,f’(x)>0,f(x)为单调递增
即f(x)单调增区间(0,π),(3π/2,2π)
单调减区间(π,3π/2 )
由单调性可得:f极大值=f(π)=2+π
f极小值=f(3π/2)=3π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询