高数定积分!
1个回答
展开全部
f'(x) = xsinx
f(π/2)=0
∫(0->π/2) f(x) dx
=[xf(x)]|(0->π/2) -∫(0->π/2) xf'(x) dx
=-∫(0->π/2) x^2.sinx dx
=∫(0->π/2) x^2 dcosx
=[x^2.cosx]|(0->π/2) -2∫(0->π/2) xcosx dx
=-2∫(0->π/2) xdsinx
=-2[xsinx]|(0->π/2) +2∫(0->π/2) sinx dx
=-π -2[cosx]|(0->π/2)
=-π +2
f(π/2)=0
∫(0->π/2) f(x) dx
=[xf(x)]|(0->π/2) -∫(0->π/2) xf'(x) dx
=-∫(0->π/2) x^2.sinx dx
=∫(0->π/2) x^2 dcosx
=[x^2.cosx]|(0->π/2) -2∫(0->π/2) xcosx dx
=-2∫(0->π/2) xdsinx
=-2[xsinx]|(0->π/2) +2∫(0->π/2) sinx dx
=-π -2[cosx]|(0->π/2)
=-π +2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询