如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠BAC度数。
展开全部
解:延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
PA=PA,PM=PF,
∴Rt△PFA≌Rt△PMA,
∴∠FAP=∠PAC=50°.
故答案为:50°.
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
PA=PA,PM=PF,
∴Rt△PFA≌Rt△PMA,
∴∠FAP=∠PAC=50°.
故答案为:50°.
追问
求∠BAC!!
追答
楼主你仔细看嘛,BAC我在这之前就求出来,还给你拓展了的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在 △PFA和 △PMA中,
PA=PA,PM=PF,
∴ △PFA=△PMA,
∴∠FAP=∠PAC=50°.
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在 △PFA和 △PMA中,
PA=PA,PM=PF,
∴ △PFA=△PMA,
∴∠FAP=∠PAC=50°.
追问
求∠BAC!!
追答
我求出来了呀!证明:延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询