已知函数f(x)=2√3sinx/3cosx/3-2(sinx/3)^2,求函数f(x)的值域?
1个回答
展开全部
f(x)=2√3sin(x/3)cos(x/3)-2sin²(x/3)
=√3sin(2x/3)-[1-cos(2x/3)]
=√3sin(2x/3)+cos(2x/3)-1
=2[√3/2*sin(2x/3)+1/2*cos(2x/3)]-1
=2sin(2x/3+π/6)-1
因为-1≤sin(2x/3+π/6)≤1
所以-3≤2sin(2x/3+π/6)-1≤1
即值域为[-3,1]
=√3sin(2x/3)-[1-cos(2x/3)]
=√3sin(2x/3)+cos(2x/3)-1
=2[√3/2*sin(2x/3)+1/2*cos(2x/3)]-1
=2sin(2x/3+π/6)-1
因为-1≤sin(2x/3+π/6)≤1
所以-3≤2sin(2x/3+π/6)-1≤1
即值域为[-3,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询