如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG平分线于点F.(1)试说明EO=FO;(2...
如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG平分线于点F.
(1)试说明EO=FO;
(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,请说明理由 展开
(1)试说明EO=FO;
(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,请说明理由 展开
展开全部
【分析】(1)由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)假设四边形BCFE是菱形,再证明与在同一平面内过同一点有且只有一条直线与已知直线垂直相矛盾
【解:】(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)∵菱形BCFE
∴AO=OC OE=OF 且AC⊥EF
又∵MN∥BC
∴∠AOE=∠AOC=90°
∵题中未说明∠AOC一定为90°,所以不成立
【解:】(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)∵菱形BCFE
∴AO=OC OE=OF 且AC⊥EF
又∵MN∥BC
∴∠AOE=∠AOC=90°
∵题中未说明∠AOC一定为90°,所以不成立
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BAC,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.
解答:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.
证明:∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO,
又∵OA=OC,
∴四边形AECF是平行四边形,
又∵∠1=∠2,∠4=∠5,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴四边形AECF是矩形.
解答:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.
证明:∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO,
又∵OA=OC,
∴四边形AECF是平行四边形,
又∵∠1=∠2,∠4=∠5,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴四边形AECF是矩形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设BC延长线端点为P,
<OCE=<BCO/2,
<FCO=<OCP/2,
<BCO+<OCP=180度,
<ECO+<FCO=90度,
MN//BC,
<OFC=<FCP(内错角相等),
<FCO=<FCO,
所以<OCF=<OFC,
三角形OCF是等腰三角形,
故OC=OF,
同理OE=OC,
故OE=OF.
2、当O移至AC中点时,
仍然OE=OF,
AO=CO,
故四边形ECFA是平行四边形,(对角线互相平分的四边形是平行四边形),
又〈ECF=90度,
所以四边形AECF是矩形。
<OCE=<BCO/2,
<FCO=<OCP/2,
<BCO+<OCP=180度,
<ECO+<FCO=90度,
MN//BC,
<OFC=<FCP(内错角相等),
<FCO=<FCO,
所以<OCF=<OFC,
三角形OCF是等腰三角形,
故OC=OF,
同理OE=OC,
故OE=OF.
2、当O移至AC中点时,
仍然OE=OF,
AO=CO,
故四边形ECFA是平行四边形,(对角线互相平分的四边形是平行四边形),
又〈ECF=90度,
所以四边形AECF是矩形。
追问
看清题吧 是证明是否是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
【分析】(1)由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)假设四边形BCFE是菱形,再证明与在同一平面内过同一点有且只有一条直线与已知直线垂直相矛盾
【解:】(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)∵菱形BCFE
∴AO=OC OE=OF 且AC⊥EF
又∵MN∥BC
∴∠AOE=∠AOC=90°
∵题中未说明∠AOC一定为90°,所以不成立
【解:】(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)∵菱形BCFE
∴AO=OC OE=OF 且AC⊥EF
又∵MN∥BC
∴∠AOE=∠AOC=90°
∵题中未说明∠AOC一定为90°,所以不成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询