展开全部
证明:
用到两角和正切公式的变形
tan(M+N)=(tanM+tanN)/(1-tanMtanN)
∴
tanM+tanN=tan(M+N)*(1-tanMtanN)
∴
tanB/2tanA/2+tanB/2tanC/2+tanC/2tanA/2
=
tan(B/2)[tan(A/2)+tan(C/2)]+tan(C/2)*tan(A/2)
=tan(B/2)*tan(A/2+C/2)*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=tan(B/2)*tan(π/2-B/2)*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=[sin(B/2)/cos(B/2)]*[sin(π/2-B/2)/cos(π/2-B/2)]*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=[sin(B/2)/cos(B/2)]*[cos(B/2)/sin(B/2)]*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=1*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=1-tan(C/2)tan(A/2)+tan(C/2)tan(A/2)
=1
∴
原等式成立
用到两角和正切公式的变形
tan(M+N)=(tanM+tanN)/(1-tanMtanN)
∴
tanM+tanN=tan(M+N)*(1-tanMtanN)
∴
tanB/2tanA/2+tanB/2tanC/2+tanC/2tanA/2
=
tan(B/2)[tan(A/2)+tan(C/2)]+tan(C/2)*tan(A/2)
=tan(B/2)*tan(A/2+C/2)*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=tan(B/2)*tan(π/2-B/2)*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=[sin(B/2)/cos(B/2)]*[sin(π/2-B/2)/cos(π/2-B/2)]*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=[sin(B/2)/cos(B/2)]*[cos(B/2)/sin(B/2)]*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=1*[1-tan(A/2)tan(C/2)]+tan(C/2)tan(A/2)
=1-tan(C/2)tan(A/2)+tan(C/2)tan(A/2)
=1
∴
原等式成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询