线性方程组的解的三种情况是什么?
1个回答
展开全部
(1)唯一解
唯一解的情况非常好理解,就是每个变量均有唯一值,在高斯-诺尔当消元法中,对应的情况就是,增广矩阵中的系数矩阵A可以化简为单位矩阵。
实例如下:
可以看到,若矩阵的秩R==原线性方程组变量的个数(也是增广矩阵的列数)n,那么此时线性方程组有唯一解。
(2)无解
根据上一节中,无解的实例ex1,我们可以看到,若存在任意行有0=d(常数项)。那么线性方程组无解。因此这种情况,就无需看矩阵的秩与n的关系,可以直接通过是否存在“0=d”方程来判断。
(3)无穷多解
根据上一节中,无穷多解的实例ex2,可以很容易的发现。若矩阵的秩R<n,就一定有自由变量F的存在。
这里解释一下自由变量F:不是主元的变量就称作自由变量。
思考:为什么R<n,就一定存在自由变量?
因为有一行全为0,那么就一定存在主元的数量<变量的数量。
因此,结论是:若存在矩阵的秩R<n,那么线性方程组一定有无穷多解。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
第一种 消元法 ,此法 最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况. 第二种 克拉姆法则,如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式,就是解; ...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询