∫dx / [x²√(1+x²)]
2个回答
2012-03-23
展开全部
原积分=∫[dx/[(x^*√(1+x^)]
令x=tant,则有t=arctanx, 而且有:√(1+x^)=√(1+tan^t)=√sec^t=sect;
x^=tan^t,dx=d(tant)=sec^tdt
于是,原积分化为:
∫sec^tdt/(tan^t*sect)
=∫sectdt/tan^t
=∫(1/cost)*dt/(sin^t/cos^t)
=∫cost*dt/sin^t
=∫d(sint)/sin^t
=∫(sint)^(-2) *d(sint)
=-(sint)^(-1)
=-1/sint
=-根号(1+x^2)/x
===========================================================================
∫1/[x^2*√(1+x^2)] dx
令x=tana
则:√(1+x^2)=seca
原式=∫1/(tan^2*seca)*sec^2a da
=∫cosa/sin^2a da
=∫1/sin^2a d(sina)
=-1/sina
=-√(1+x^2)/x
令x=tant,则有t=arctanx, 而且有:√(1+x^)=√(1+tan^t)=√sec^t=sect;
x^=tan^t,dx=d(tant)=sec^tdt
于是,原积分化为:
∫sec^tdt/(tan^t*sect)
=∫sectdt/tan^t
=∫(1/cost)*dt/(sin^t/cos^t)
=∫cost*dt/sin^t
=∫d(sint)/sin^t
=∫(sint)^(-2) *d(sint)
=-(sint)^(-1)
=-1/sint
=-根号(1+x^2)/x
===========================================================================
∫1/[x^2*√(1+x^2)] dx
令x=tana
则:√(1+x^2)=seca
原式=∫1/(tan^2*seca)*sec^2a da
=∫cosa/sin^2a da
=∫1/sin^2a d(sina)
=-1/sina
=-√(1+x^2)/x
更多追问追答
追问
=-1/sint
=-根号(1+x^2)/x
麻烦您解释下这步,谢谢!
追答
x=tant=sint/cost
x^2=(sint)^2/(cost)^2
x^2/(1+x^2)=(sint)^2
sint=x/根号(1+x^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询