如何用第二类换元法求不定积分:∫〖x√(x/(2a-x)) dx〗

 我来答
华源网络
2022-05-17 · TA获得超过5578个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:144万
展开全部
令x=2a(sin x)^2,则dx=4a(sin t)(cos t)dt,原式:=8a^2∫(sin t)^4 dt=8a^2∫[(1-cos 2t)/2]^2 dt=a^2∫(3-4cos 2t+cos 4t)dt=3a^2 t-2a^2(sin 2t)+a^2(sin 4t)/4+C=3a^2(arcsin√(x/(2a)))-2a√x(2a-x)+((a-x)√x(2a-x))/2+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式