微积分题求解答:1、∫[(tanθ-1)^2]dθ= 2、∫dθ/(1+sinθ)= 3、∫ln(x+1)dx=
2个回答
展开全部
1、∫(tanθ-1)²dθ
=∫(tan²θ-2tanθ+1)dθ
=∫(sec²θ-2tanθ)dθ
=tanθ+2ln|cosθ|+C
2、∫dθ/(1+sinθ)
=∫1/(1+2sin(θ/2)cos(θ/2)) dθ
分子分母同除以cos²(θ/2),得
=∫sec²(θ/2)/(sec²(θ/2)+2tan(θ/2)) dθ
=2∫sec²(θ/2)/(tan²(θ/2)+1+2tan(θ/2)) d(θ/2)
=2∫1/(tan(θ/2)+1)² d(tan(θ/2))
=-2/(tan(θ/2)+1)+C
3、∫ln(x+1)dx
=xln(x+1)-∫x/(x+1)dx
=xln(x+1)-∫(x+1-1)/(x+1)dx
=xln(x+1)-∫1dx+∫1/(x+1)dx
=xln(x+1)-x+ln(x+1)+C
=∫(tan²θ-2tanθ+1)dθ
=∫(sec²θ-2tanθ)dθ
=tanθ+2ln|cosθ|+C
2、∫dθ/(1+sinθ)
=∫1/(1+2sin(θ/2)cos(θ/2)) dθ
分子分母同除以cos²(θ/2),得
=∫sec²(θ/2)/(sec²(θ/2)+2tan(θ/2)) dθ
=2∫sec²(θ/2)/(tan²(θ/2)+1+2tan(θ/2)) d(θ/2)
=2∫1/(tan(θ/2)+1)² d(tan(θ/2))
=-2/(tan(θ/2)+1)+C
3、∫ln(x+1)dx
=xln(x+1)-∫x/(x+1)dx
=xln(x+1)-∫(x+1-1)/(x+1)dx
=xln(x+1)-∫1dx+∫1/(x+1)dx
=xln(x+1)-x+ln(x+1)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询