如图,在△ABC中∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△A
如图,在△ABC中∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的三边,交点分别是G,F,E点.GE,CD的交点为M,且ME=46,MD:CO=2:5.(...
如图,在△ABC中∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的三边,交点分别是G,F,E点.GE,CD的交点为M,且ME=46,MD:CO=2:5.
(1)求证:∠GEF=∠A;
(2)求⊙O的直径CD的长;
(3)若cos∠B=0.6,以C为坐标原点,CA,CB所在的直线分别为X轴和Y轴,建立平面直角坐标系,求直线AB的函数表达式. 展开
(1)求证:∠GEF=∠A;
(2)求⊙O的直径CD的长;
(3)若cos∠B=0.6,以C为坐标原点,CA,CB所在的直线分别为X轴和Y轴,建立平面直角坐标系,求直线AB的函数表达式. 展开
3个回答
展开全部
(1)如图:联合DF.∵CD是直径,∴∠CFD是直角,DF∥AC,∠A=∠GDF(同位角)∠GDF=∠GEF(同弧所对的角),故∠A=∠GEF. (2)∠BAC是直角,易知EF是圆O直径,即圆心O在EF上且为EF中点.D为BA中点, DF∥AC,F为AC中点.△DAC中,DA=DC,DE⊥CA,E为AC中点, ∴EF∥AB.易证△GMD∽△EMO,有GM:EM=DM:MO ;① 易证△GMD∽△CME,有GM:CM=DM:ME.② 整理①,②得:EM/MO = CM/ME.又由MD:CO=2:5有MD=CD/5,MO=3CD/10,ME=4√6,CM=4CD/5, ∴CD=20
展开全部
证明一:
(1)连接DF,∵∠ACB=90°,D是AB的中点,
∴BD=DC=12AB,(2分)
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF,(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=12AB.(3分)
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
(1)连接DF,∵∠ACB=90°,D是AB的中点,
∴BD=DC=12AB,(2分)
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF,(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=12AB.(3分)
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图很不标准
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询