能使等式cosθ-根号3sinθ=(4m-6)/(4-m)成立的实数m的取值范围
2个回答
展开全部
cosθ-根号3sinθ
=2cos(θ+π/3)
-2<=2cos(θ+π/3)<=2
所以-2<=(4m-6)/(4-m)<=2
-2<=(4m-6)/(4-m)
(2m-3)/(4-m)+1>=0
(m+1)/(4-m)>=0
所以(m+1)(m-4)<=0
分母不等于0
-1<=m<4
(4m-6)/(4-m)<=2
(2m-3)/(4-m)-1<=0
(3m-7)/(4-m)<=0
(3m-7)(m-4)>=0
m<=7/3,m>4
综上
-1<=m<=7/3
=2cos(θ+π/3)
-2<=2cos(θ+π/3)<=2
所以-2<=(4m-6)/(4-m)<=2
-2<=(4m-6)/(4-m)
(2m-3)/(4-m)+1>=0
(m+1)/(4-m)>=0
所以(m+1)(m-4)<=0
分母不等于0
-1<=m<4
(4m-6)/(4-m)<=2
(2m-3)/(4-m)-1<=0
(3m-7)/(4-m)<=0
(3m-7)(m-4)>=0
m<=7/3,m>4
综上
-1<=m<=7/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询